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1 An informal account of my work

I am primarily interested in questions about billiards in all of their many forms. The
study of billiards has been growing steadily over the past 30 years, and it is currently
a very active field. I like it because the behavior is global: everything is locally flat,
except at isolated vertices, so the system is governed by combinatorics. This leads to
beautiful structure, some of which is classical, and much of which is currently being
discovered, by me and many others.

In the field of billiards, there are four inter-related areas of study that inform each
other; I will explain the relationships between them, and my work on them, in §2:

• billiards, a point bouncing around inside a polygon,

• translation surfaces, generalizations of the square torus,

• the sequences of edges a trajectory hits, and

• interval exchange transformations, cutting and reassembling an interval.

I have done work in all four of these areas. Additionally, I have done much of the
foundational work to develop a new area of billiards, in which a beam of light refracts
through a planar tiling. I named the system tiling billiards, led the first two research
groups that studied it, and coauthored the first three papers in the area. Now other
people are studying it: two mathematicians in France have recently written papers
[HR18, R19] giving beautiful proofs of our conjectures, and extending the theory.

In any polygonal billiard table, almost all of the trajectories are aperiodic. Yet
I have mostly chosen to focus on periodic behavior, because I can draw pictures
of the periodic paths, which tend to be beautiful, and also because many simple
questions have never been explored. Figure 1 shows several beautiful examples of
periodic billiard trajectories on the regular pentagon, which no one had ever seen
before we created them in [DL18]. Furthermore, the structure of periodic directions
is a generalization of continued fractions, and depends on finitely generated groups.

Figure 1: Some periodic billiard paths on the regular pentagon, from [DL18].

Much of my work translates back and forth between the geometry of billiard
trajectories, and the combinatorics of the sequence of edges that such a trajectory
hits, studying how each of them determines the other.
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2 More details about my work

As described above, to study polygonal billiards, we use tools in four inter-related
areas: inner billiards, translation surfaces, sequences, and interval exchange transfor-
mations. I’ll now describe how they fit together and the work I’ve done in various
areas, and then I’ll give more technical details in § 3.

In billiards, a point bounces around inside a polygon (red picture in Figure 2).
If we label each edge, e.g. A,B,C,D as in the figure, then each trajectory has
a corresponding bounce sequence of edges that it hits, e.g. . . . A,D,B,D,C, . . . In
[CCD+18], we showed “how to hear the shape of a billiard table”: how to reconstruct
the shape of a polygon, from the collection of all possible bounce sequences on it.

Figure 2: A schematic picture of the relationship between (red) billiards,
(orange) translation surfaces, (yellow and green) interval exchange trans-
formations, (blue) tiling billiards, and (purple) geodesics on polyhedra.

In billiards, a trajectory changes direction every time it hits an edge. To make
things easier, we can “unfold” the polygon, creating a new copy by reflection each time
the point hits an edge, so that the trajectory goes straight. Continuing this process
leads to a translation surface (orange picture), made from finitely many copies of the
original polygon, together with a map to the polygon. The map carries straight lines
in the surface to billiard paths. Thus, the study of billiards on the rational polygon
reduces to the study of the straight line flow on a translation surface.

As with billiards, we can look at the sequence of edges that a trajectory passes
through. In my thesis [D13, D14], I studied the language of such sequences for the
double pentagon surface, and other double regular polygons. Later with collaborators,
we extended this result to a much larger family of surfaces [DPU18].

In the papers [DFT11, DL18], we classified the directions and behavior of all of
the periodic billiard trajectories on the regular pentagon, by using the associated
translation surface, the double pentagon (see Figure 4).

We can reduce the problem to a one-dimensional system by adding one or more
parallel diagonals to the translation surface, transverse to the direction of a given
trajectory of interest (yellow and green picture). The trajectory passes through the
translation surface exactly as before, but now we only keep track of where it in-
tersects the diagonal(s). This action is equivalent to cutting and reassembling an
interval, which we call an interval exchange transformation (IET). In the recent pa-
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per [CD18], we showed that, while all IETs are measure-preserving, almost every
measure-preserving transformation is not conjugate to any IET.

In [BDFI18], we showed that the behavior of a tiling billiards trajectory (blue
picture in Figure 2) on a triangle tilings is equivalent to the orbit of a point in a
certain 3-interval orientation-reversing IET. Orientation-reversing IETs have a lot of
stable, periodic points, leading to mostly stable, periodic behavior in tiling billiards
on triangle tilings. By contrast, almost every trajectory on the triangle-hexagon tiling
is unstable, aperiodic and dense, as we showed in [DH18].

One last billiard system is trajectories on polyhedra. In [DDoTY17], we fully
characterized all of the vertex-to-vertex paths on the regular tetrahedron and cube
(purple picture in Figure 2), using the Stern-Brocot tree of rational numbers. We
showed that it is not possible to start at a vertex of a cube, travel in a straight line,
and return to the same vertex. Some colleagues, inspired by our paper, showed that
such a path is possible on the dodecahedron by giving an explicit example [AA18], and
followed that up with a full characterization of paths on the dodecahedron [AAH18].

I have also done several projects outside of billiards:

• We described the properties of the fractal-like “Thurston set” (Figure 3), which
is the points in the complex plane that are Galois conjugates of periodic points
of a family of “tent maps” [BDLW18]. Our paper resolved unfinished work from
the paper that William Thurston was working on when he died [T14].

Figure 3: The Thurston set in the complex plane. Each point is the root
of a polynomial; points are colored according to its degree.

• With some colleagues at Northwestern, we answered the question, “if you ran
a race at an average pace of p minutes per mile, must there have been some
mile that you ran in exactly p minutes?” in the negative, by showing that it is
a novel application of the Horizontal Chord Theorem [BDaD17].
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3 Technical details

In this section, I’ll give more details about my work described above.

Bounce rigidity. A classic question from a 1960s paper asks, “Can you hear the
shape of a drum?” [K66]. We answered this question in the affirmative as it applies
to billiards, in our paper “How to hear the shape of a billiard table” [CCD+18]. We
gave a constructive method, in which we take the collection of all possible bounce
sequences on a table, and use it construct both the cyclic ordering of the edges,
and the angles between adjacent edges. We also showed that, to know the exact
angles of the table, an infinite amount of information is required; it is not possible
to reconstruct the angles from finitely many strings of finitely many sequences. This
is a “rigidity” result, in the sense that the collection of bounce sequences determines
the shape of the table.

In a companion paper, our colleagues proved that the bounce spectrum uniquely
determines the shape of the table: the angles between edges and their lengths [DELS18].
Their result is stronger, but it is not constructive.

Cutting sequences on Bouw-Möller surfaces.
The translation surfaces I have studied are lattice surfaces (also known as Veech

surfaces), meaning that their automorphism group forms a lattice, or in other words,
that they have a lot of symmetry. Given such a surface, it is natural to ask:

• What happens to a trajectory on the surface, when you apply an automorphism?

I answered this question for the double pentagon surface (see Figure 4) and other
double regular polygon surfaces in [D13], for a larger family of surfaces of which those
are a subset in [D14], and for an even larger family of surfaces of which those are
a subset, called Bouw-Möller surfaces, in [DPU18]. In all cases, the answer was in
terms of what happens to the bi-infinite cutting sequence of edges that the trajectory
cuts through. Also, understanding the effects of reflections and rotations is easy, so
the hard part of the problem was giving the effect of the shear automorphism.

Figure 4: The double pentagon surface: a screenshot of my Dance Your
Ph.D. video, which explains the above Theorem.
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Theorem (Davis [D13]). Let τ be a trajectory on the double pentagon surface, let
its associated cutting sequence of symbols be c(τ), and let the image of τ under the
shear be τ ′. Then to obtain c(τ ′) from c(τ), keep only the sandwiched symbols, those
that have the same symbol on both sides.

The main results of [D14, DPU18] are generalizations of the same idea. In
[DPU18], we studied the infinite family of Bouw-Möller surfaces. We showed how
to take the surface made from m equiangular 2n-gons, and shear, cut, and paste it
to transform it into the surface made from n equiangular 2m-gons. We used this
symmetry to understand the action of the shear on cutting sequences. In particular,
we determined how to translate between the geometry of the transformation, and a
substitution on the sequences.

Tiling billiards and interval exchange transformations.

Definition. Given a planar tiling, a tiling billiards trajectory on the tiling is a straight
line within each tile, and refracts across edges between tiles such that the angle of
incidence equals the angle of refraction (see Figure 5a).

Figure 5: (a) a trajectory on a triangle tiling, which is a closeup of the mid-
dle picture (b) a large periodic trajectory on a triangle tiling, approaching
the Rauzy fractal (c) a trajectory on the triangle-hexagon tiling

People are excited about tiling billiards because it produces beautiful and intricate
patterns, and at the same time it seems more tractable than ordinary billiards in some
nice cases. It is also highly connected to existing areas of billiard research:

We can “fold” tiling billiard trajectories, analogous to how we “unfold” billiard
trajectories [DDiRS18]. It turns out that, for triangle tilings, all of the triangles fold
up to be circumscribed in the same circle, which reduces the system to an interval
exchange transformation that has particularly nice properties [BDFI18]. We showed
that all periodic trajectories are simple closed curves, and that in special cases, a
periodic trajectory can form a fractal-like curve (Figure 5b).
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Theorem (Baird-Smith, Davis, Fromm, Iyer, [BDFI18]) The behavior of a trajectory
on a triangle tiling with angles α, β, γ is described by the action of an orientation-
reversing interval exchange transformation with segment lengths α, β, γ.

We also noticed that, for one very specific triangle tiling, there are very long trajec-
tories, and we conjectured that they approach the Rauzy fractal under rescaling; the
one in Figure 5b is an example. Our colleagues subsequently proved this in [HR18].

The behavior of the triangle-hexagon tiling (Figure 5c) is very different: a general
trajectory is unstable and dense.

Theorem (Davis and Hooper, [DH18]) Almost every trajectory on the triangle-
hexagon tiling is dense in the entire plane, minus a periodic family of triangle centers.

Figure 5c shows 500 iterations of the trajectory of slope 1, which you can see
is filling up the plane (avoiding only small white triangles). Our main tool was an
infinite translation surface made of rhombi. We essentially showed that the surface
acts like a collection of tori, where almost every trajectory is also dense.

Classification of periodic paths on the regular pentagon.
There are two very natural questions to ask about billiards in a polygon:

• Which directions are periodic?

• What is the period in a given periodic direction?

The answers for the square have been well understood for at least a hundred years:

Theorem. The directions of periodic billiard trajectories in the square are those
with rational slope p/q. A billiard in that direction is periodic with period 2(p+ q).

We gave the answers for the double pentagon, which are as elegant as possible: as
it is for the square, the period is double the sum of the direction coefficients.

Theorem (Davis and Lelièvre, [DL18]). For a given periodic direction on the double
regular pentagon surface, there is a canonical vector in that direction, given by [a +
bφ, c+ dφ], where φ is the golden ratio and a, b, c, d ∈ N. The period of a trajectory
in that direction is 2(a+ b+ c+ d).

As our main tool, we created a quaternary tree of periodic directions, which acts
as a generalization of the Euclidean algorithm. We wrote a Sage program to draw a
picture of any periodic trajectory; many of them are stunningly beautiful (see Figure
1). We now have many questions about the appearance of the periodic trajectories;
see the next section for a partial list. We proved several results about them, including:

Theorem (Davis and Lelièvre, [DL18]). Of the countably infinitely many periodic
trajectories on the regular pentagon, 5/6 of them have both rotation and reflection
symmetry, and 1/6 of them have only reflection symmetry.

For example, in Figure 1, the first, third and fourth pentagons have rotation
symmetry, and the second has only reflection symmetry.
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4 Future work

Bounce rigidity: finding lengths. We showed how to use the set of all bounce se-
quences on a billiard table to reconstruct the edge order, and the angles. We would
also like a constructive way to use this information to determine the edges’ lengths.

Periodic billiards on more polygons. Mathematicians understand periodic billiard tra-
jectories on only four shapes of polygons: rectangles, equilateral triangles, 30-60-90
triangles, 45-45-90 triangles, regular hexagons – and now, after my work with Samuel
Lelièvre, the regular pentagon. The pentagon was the first “hard” case, because pen-
tagons don’t tile the plane. Our next step is to extend our methods to more of the
regular polygons, such as the regular heptagon and octagon.

Understanding non-equidistribution. While exploring the pictures of periodic trajec-
tories on the regular pentagon, I noticed that it is possible to find very long periodic
trajectories, which can be arbitrarily dense without distributing uniformly in the
table (see Figure 6). Curtis McMullen subsequently wrote a paper exploring this
phenomenon [M19]; see his recommendation letter for more details. I am currently
working on understanding why certain trajectories fail to visit parts of the table
completely, as in the picture on the right in Figure 6.

Figure 6: Three very long periodic billiard trajectories on the pentagon,
with similar lengths but very different behavior. The one on the left is
close to uniformly distributed, the one in the middle is not, and the one
on the right misses a corner completely.

Tiling billiards on the aperiodic Penrose tiling. Pat Hooper and I are currently work-
ing this. Our preliminary investigations suggest that, surprisingly, almost every tra-
jectory is periodic. A long periodic trajectory is in Figure 7a.

Tiling billiards in the wind-tree model. In the past 10 years there has been a lot
of interest in the wind-tree model of billiards, where there are congruent obstacles
(“trees”) at every lattice point in a given lattice, and a ball (“wind”) bounces around
in their complement [HW80, HLT11, De13, DeZ15, ST16, AH17, F18]. With Ferràn
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Valdez and Olga Romaskevich, I am working on studying a tiling billiards version of
this model. Preliminary work (Figure 7b) suggests that some trajectories are dense,
as we previously saw in the triangle-hexagon tiling.

Figure 7: (a) A long periodic trajectory on the Penrose tiling. The tiles themselves
are not shown, because they are very small. (b) A trajectory (purple) in the wind-tree
model, with square obstacles (yellow), with a fundamental domain outlined.

Undergraduate research on billiards. My undergraduate thesis student Megumi Asada
studied billiards on the equilateral triangle and regular hexagon in 2016–2017, and
proved some original theorems [A17]. My undergraduate research groups in the sum-
mers 2013 and 2016 did excellent foundational work on tiling billiards [DDiRS18,
BDFI18]. There are many open problems in many areas of polygonal billiards, flat
surfaces, and interval exchange transformations, that are accessible to students. In
addition, there are well-developed Sage packages that researchers in the field have
written and maintained, which makes it easier to start doing serious computations
early in a research project. Indeed, many breakthroughs in the field have developed
out of computer experiments.

Undergraduate research on gerrymandering. I have applied to be the director of
Summer@ICERM in 2021, to supervise about 20 students working on mathematics
problems related to assessing the “fairness” of the new maps that will be proposed
after the 2020 Census. The practice of applying geometry and random sampling to
the problem of gerrymandering has exploded in the past couple of years, and I see
it as a wonderful opportunity to apply our mathematical skills to issues of social
justice. In summer 2019, I mentored five high school students at PROMYS at Boston
University on a gerrymandering research project; they wrote a very impressive paper
showing that, at least for a toy example, “clustering benefits the minority.”
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[HLT11] Pascal Hubert, Samuel Lelièvre, Serge Troubetzkoy, The Ehrenfest wind-
tree model: periodic directions, recurrence, diffusion. Journal für die Reine und
Angewandte Mathematik 656, 223–244 (2011).

[HR18] Pascal Hubert, Olga Paris-Romaskevich, Triangle tiling billiards draw fractals
only if aimed at the circumcenter, preprint (2018), arXiv:1804.00181.

[K66] Mark Kac, Can one hear the shape of a drum? American Mathematical
Monthly 73, 1–23 (1966).
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