Interval exchange transformations from tiling billiards

Diana Davis Swarthmore College

13 January 2018 JMM, San Diego

Joint work with: Paul Baird-Smith, Elijah Fromm and Sumun Iyer SMALL 2016

SMALL 2016 - Billiards group

SMALL 2016 - Billiards group

Tiling Billiards on Triangle and Two-Square Tilings

Paul Baird-Smith, Elijah Fromm, Sumun Iyer, Adviser: Dima Davis

Yale math PhD

> Williams senior

Swarthmore VAP UT Austin CS PhD 780

Elijah Fromm, Sumun lyer and Paul Baird-Smith

Standard (Inner) Billiards:

trajectory is reflected against the edge of the table, preserving angles

rational slope p/q is periodic, with period 2(p+q)

rational slope p/q is periodic, with period 2(p+q)

μ

Standard (Inner) Billiards:

- A trajectory is **dense** with probability 1
- Behavior is **unstable**

Snell's Law: governs the refraction of a beam of light passing from one material to another

standard material, positive index of refraction k1

standard material, positive index of refraction k2 Snell's Law: governs the refraction of a beam of light passing from one material to another

standard material, positive index of refraction k1

metamaterial, negative index of refraction k2 Snell's Law: governs the refraction of a beam of light passing from one material to another

materials with equal and opposite indices of refraction

Applications: 1. Invisibility cloak

2. Perfect lens

A cloak made of a negativeindex metamaterial can bend radiation around an object inside it, making that object seem invisible.

> Metamaterial cloak

Radiation

source

Graphic by Jasiek Krzysztofiak / Nature

Applications:1. Invisibility cloak2. Perfect lens

The spacing between the elements can vary, but is always less than the wavelength of the radiation.

Collectively, the array of elements functions similarly to a hologram, shaping the radiation in ways no natural material can.

Graphic by Jasiek Krzysztofiak / Nature

Tiling Billiards:

A dynamical system where light refracts through a planar tiling by materials with equal and opposite alternating indices of refraction

materials with equal and opposite indices of refraction

Standard Billiards:

trajectory is reflected **against** the edge of the table, preserving angles

Tiling Billiards:

trajectory is reflected **across** each edge of the tiling, preserving angles

Standard Billiards:

trajectory is reflected **against** the edge of the table, preserving angles

Tiling Billiards:

trajectory is reflected **across** each edge of the tiling, preserving angles

Standard (Inner) Billiards:

- A trajectory is **dense** with probability 1
- Behavior is **unstable**

Tiling Billiards on triangle tilings:

- Most trajectories are **periodic**
- Trajectories are very stable

- Lemmas (SMALL '16):
 Trajectory folds to a single line
 Folded triangles share a circumcircle
 All blue triangles end up on
 - the same side

Insight (SMALL '16):
Fix trajectory; triangle moves
Keep track of favorite vertex
This yields a 1-dimensional system, in fact an Interval Exchange Transformation (IET).

Let X be the location of the identified vertex, and τ the angle subtended by the trajectory chord.

Our IET is defined by:

$\tau + 2\beta - X \quad \text{if} \quad 0 < X < 2\beta$ $X' = \tau + 2\beta - 2\gamma - X \quad \text{if} \quad 2\beta < X < 2\beta + 2\gamma$ $\tau - 2\gamma - X \quad \text{if} \quad 2\beta + 2\gamma < X < 2\pi,$

an orientation-reversing IET.

Tiling Billiards on triangle tilings:

- Give a 3-IET on the circle
- Interval lengths: 2α , 2β , 2γ
- Shift transformations: based on α , β , γ , τ
- Are orientation-reversing ("fully flipped")

Everything is flipped periodic, every point is stable, periods of form 4n+2

Standard (Inner) Billiards:

- A trajectory is **dense** with probability 1
- Behavior is **unstable**

Tiling Billiards on triangle tilings:

- Most trajectories are **periodic**
- Trajectories are very stable

Burning question: What causes periodicity and stability in tiling billiards on triangle tilings?

They correspond to fully flipped IETs.

Comparison to non-flipped IETs

If |AB| and |C| are irrationally related, every point is aperiodic (rotation).

Tiling billiards corresponds to orientation-reversing 3-IET

Idea:

- Use the square of the 3-IET
- Get an orientation-preserving 6*-IET
- Stack all of them into a PET

Tiling billiards PET: stack of IETs

Tiling billiards PET: stack of IETs

Visit the zoo: Billiard trajectories on triangle tilings

Visit the zoo: Billiard trajectories on triangle tilings

Visit the zoo: Billiard trajectories on triangle tilings

The Rauzy fractal as a billiard trajectory

The Rauzy fractal as a billiard trajectory!

Future work:

- Show that we actually get fractals as the limit of billiard trajectories
- Completely understand fully flipped IETs (service to community)
- Other tilings!