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• A trajectory is dense with probability 1 
• Behavior is unstable

Standard (Inner) Billiards:



Snell’s Law: 
governs the refraction  
of a beam of light passing from  
one material to another
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materials with 
equal and opposite 

indices of 
refraction

Tiling Billiards: 
A dynamical system where light refracts through 
a planar tiling by materials with equal and 
opposite alternating indices of refraction
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• A trajectory is dense with probability 1 
• Behavior is unstable

Standard (Inner) Billiards:

Tiling Billiards on triangle tilings:

• Most trajectories are periodic 
• Trajectories are very stable

Burning question: What causes periodicity and 
stability in tiling billiards on triangle tilings?



Lemmas (SMALL ’16):
• Trajectory folds to a single line 
• Folded triangles share a 

circumcircle 
• All blue triangles end up on 

the same side



Insight (SMALL ’16):
• Fix trajectory; triangle moves 
• Keep track of favorite vertex 
• This yields a 1-dimensional 

system, in fact an Interval 
Exchange Transformation (IET).





















Our IET is defined by:

        τ + 2β - X         if           0 < X < 2β
X’ = τ + 2β - 2γ - X  if         2β < X < 2β + 2γ 
        τ - 2γ - X          if 2β + 2γ < X < 2π,

an orientation-reversing IET.

Let X be the location of the identified 
vertex, and τ the angle subtended by 
the trajectory chord.



Tiling Billiards on triangle tilings:

• Give a 3-IET on the circle 
• Interval lengths: 2  , 2  , 2  
• Shift transformations: based on   ,   ,  , τ 
• Are orientation-reversing (“fully flipped”)

β γ α

β γ α
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period 6period 6 period 6

period 2period 2

Everything is flipped periodic, every 
point is stable, periods of form 4n+2

Why flipped IETs are stable & periodic



• A trajectory is dense with probability 1 
• Behavior is unstable

Standard (Inner) Billiards:

Tiling Billiards on triangle tilings:
• Most trajectories are periodic 
• Trajectories are very stable

Burning question: What causes periodicity and 
stability in tiling billiards on triangle tilings?

• They correspond to fully flipped IETs.



B A C 

C B A 

Comparison to non-flipped IETs

If |AB| and |C| are irrationally related, 
every point is aperiodic (rotation).
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Tiling billiards corresponds to 
orientation-reversing 3-IET 

Idea:  
• Use the square of the 3-IET 
• Get an orientation-preserving 6*-IET 
• Stack all of them into a PET



Tiling billiards PET: stack of IETs

IET

IET



Tiling billiards PET: stack of IETs



Visit the zoo: 
Billiard trajectories on triangle tilings
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The Rauzy fractal as a billiard trajectory



The Rauzy fractal as a billiard trajectory!



• Show that we actually get fractals as 
the limit of billiard trajectories 

• Completely understand fully flipped 
IETs (service to community) 

• Other tilings!

Future work:


