
This book is for anyone who wishes to illustrate their mathematical ideas, 
which in our experience means everyone. It is organized by material, rather 
than by subject area, and purposefully emphasizes the process of creating 
things, including discussions of failures that occurred along the way. As a 
result, the reader can learn from the experiences of those who came before, 
and will be inspired to create their own illustrations.

Topics illustrated within include prime numbers, fractals, the Klein bottle, 
Borromean rings, tilings, space-fi lling curves, knot theory, billiards, complex 
dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta 
function, quadratic fi elds, hyperbolic space, and hyperbolic 3-manifolds. 
Everyone who opens this book should fi nd a type of mathematics with which 
they identify.

Each contributor explains the mathematics behind their illustration at an 
accessible level, so that all readers can appreciate the beauty of both the 
object itself and the mathematics behind it.
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INTRODUCTION It is said that an interpreter ‒ a person who translates from one language to 
another ‒ does not exchange words for words, but rather exchanges meaning for 
meaning. As mathematicians, a large part of our job is to explain things to others. 
We may use words and symbols to do this, but our job is not primarily to convey 
words and symbols; like an interpreter’s, it is to convey meaning. 

There are many ways to communicate meaning. As the great mathematician 
William Thurston said, “Mathematics is an art of human understanding. Math-
ematical concepts are abstract, so it ends up that there are many diff erent ways 
that they can sit in our brains. A given mathematical concept might be primarily 
a symbolic equation, a picture, a rhythmic pattern, a short movie ‒ or best of all, 
an integrated combination of several diff erent representations.”

The purpose of this book, then, is to help you fi nd a good representation of the 
mathematical concept you wish to illustrate. This book does three things:

• Showcases the great variety of materials for illustrating mathematics,

• Gives voice to people’s stories about illustrating their mathematics, 
so that we can learn from their experience, and

• Shows the variety of ways that diff erent people use the same materials 
in very diff erent ways.

In addition, it will introduce you to many of the amazing people who spent time at 
the Institute for Computational and Experimental Research Mathematics (ICERM) 
in fall 2019 for the Illustrating Mathematics program, in an attempt to capture 
some of the creative and generous spirit that fl owed through our days there.

Diana Davis
May 1, 2020
Bures-sur-Yvette, France
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Illustrating Mathematics semester program participants, ICERM, Fall 2019.
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The adage that a picture is worth a thousand words is certainly 
true in mathematics, in which one carefully chosen fi gure can 
eliminate the need for many lines of exposition. For most of 
us, our most frequent way of illustrating mathematics is by 
hand – on chalkboards, scrap paper, paper napkins or, increas-
ingly, whiteboards and electronic tablets. 

DRAWINGS



7

Images reprinted by permission from Springer Nature: Geometriae Dedicata, 106, 
Bundles, handcuff s, and local freedom, Autumn Kent, 2004, 
https://www.springer.com/journal/10711/.

AUTUMN KENT

University of Wisconsin

pen drawings

These drawings are from my fi rst solo paper, “Bundles, handcuff s, and local 
freedom.” They illustrate the existence of a knot in the 3-sphere whose 
complement is hyperbolic, that admits a fi bration over the circle, and whose 
group contains a subgroup that is locally free (fi nitely generated subgroups 
are free) and not free. This answered a question from James Anderson: 
He had observed that if such a thing could not exist, then there would be 
counterexamples to Thurston’s Virtual Fibration Conjecture (which we now 
know to be true due to the remarkable work of Ian Agol and Dani Wise).

The fundamental group of the 2-complex X (A) contains a subgroup that is 
locally free and not free. The way to construct the knots is to fi nd a fi bered 
knot in the complement of X so that X’s group injects into the knot’s. The 
complement of X is the handlebody (B). The knot is inside the handlebody 
(C). The knot is built by taking a square knot (which is fi bered), cabling 
(which is again fi bered), and then “plumbing.” Plumbing is the process of 
gluing a twisted band along a square in a fi ber (D). The rest of the fi gures 
are part of the proof that the knot is hyperbolic, and that you can perform 
surgeries to get closed hyperbolic fi bered manifolds with groups having 
locally free non-free subgroups.

One year while I was in graduate school, Bob Gompf was teaching a course 
in 4-manifolds that I had lost the thread of. I didn’t want to be rude, so I 
kept attending. So there I was in class, doodling and thinking about Ander-
son’s question. I knew that connect sums, cabling, and plumbing preserved 
fi bering. I sketched the complement of X and saw the square knot there. I 
cabled it for fun. I wanted the result to be hyperbolic, so I needed to do 
something else. So I plumbed a little band on to get rid of the essential 
torus that was ruining hyperbolicity, and I left class with a theorem. It took 
a while to prove that the examples were hyperbolic, but I had found them. 
Getting lost in a lecture isn’t always bad!

I drew the pictures by hand since I didn’t know how to do it any other way!

A

C

E

B

D
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In December of 1971, the grad students at Berkeley invited me (I was also 
heavily bearded with long hair) to paint math frescoes on the corridor wall 
separating their offi  ces from the elevator foyer. While I was milling around 
before painting, one of the grad students, Bill Thurston, came up to ask, “Do 
you think this is interesting to paint?” It was a complicated maze-like looking 
smooth one-dimensional object encircling three points in the plane. I asked, 
“What is it?” and was astonished to hear, “It is a simple closed curve.” I said, 
“You bet it’s interesting!”

So we proceeded to spend several hours painting this curve on the wall. It 
was a great learning and bonding experience. For such a curve drawing to 
look good, it has to be drawn in sections of short, parallel, slightly curved 
strands that are subsequently smoothly spliced together. It was natural and 
automatic to do it in terms of bunches of strands at a time – as an approxi-
mate foliation – and then connect them up at the end. Thus some years later 
in ’76, when Bill gave an impromptu three-hour lecture about his theory of 
surface transformations, I absorbed it painlessly at a heuristic level after the 
experience of several hours of painting in ’71.

When I asked how Thurston got such curves, he said by successively applying 
to a given simple curve a pair of Dehn twists along intersecting curves. The 
“wall curve painting,” two meters high and four meters wide, dated and 
signed, lasted on that Berkeley wall with periodic restoration for almost four 
decades before fi nally being painted over.

DENNIS SULLIVAN & 
WILLIAM THURSTON

University of California, Berkeley

painted mural

Further information: Lee Mosher, What Is... A Train Track? Notices of the AMS 
50(3), March 2019, pp. 354–356. 
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Paper is by far the most abundant resource in most mathemati-
cians’ offi  ces, and it is our most readily available tool for creating 
mathematical illustrations. Most of us created the Platonic 
solids out of paper at some point in our early education, and 
have created numerous other models throughout our math-
ematical careers. For creating objects that people will handle 
and manipulate, and especially for those that require some 
stretch, sewn or knitted fabrics may work better than paper.

PAPER & 
FIBER ARTS
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The triacontahedron is a Catalan solid that has thirty congruent rhombic 
faces. Its dual polyhedron is the icosidodecahedron, which is the Archime-
dean solid obtained by deeply truncating the dodecahedron or, alternatively, 
deeply truncating the icosahedron. 

To make a paper model of the triacontahedron, one can easily fi nd a net on 
the internet – a fl at connected version of all the faces that, when assembled, 
gives the polyhedron – to download, print, cut out, and tape together. In this 
case, I wanted a version where the faces are decorated, and where I could 
print out or laser-cut each piece. To be able to do that cleanly, I affi  xed 
tabs to the edges. Yet tabs introduce an issue, because they require space. 
Acute angles between adjacent faces of any given net might not allow for 
the insertion of tabs. I therefore dissected the net into pieces so that on each 
piece no adjacent faces have exterior edges making acute angles. To make 
matters more mathematically interesting and less demanding to produce, I 
made all of the pieces congruent. 

Note that this dissection condition came from the medium: paper is an 
inexpensive way to construct a solid, and it is easy to decorate. I added 
the congruence condition so that the number of unique fi les created for the 
printer or laser cutter is kept to a minimum. Each face could be cut indi-
vidually with tabs on all four sides, but it is preferable to have more faces 
connected, because then the paper is automatically hinged between these 
faces, which constrains their relationship in space and creates structural 
integrity.

With ten three-face pieces cut and ready, it seems simple to assemble the 
triacontahedron. Surprisingly, there are many ways to begin assembling with 
the pieces and get stuck so that the desired polyhedron cannot be completed. 
The reader might wonder why we don’t use fi ve- or six-face pieces, for then 
only six or fi ve copies would have been needed, respectively. As with many 
projects in mathematical art, this enterprise has proven to provide math-
ematically interesting questions as well as illustrations.

For more information on the rhombic triacontahedron: 
http://mathworld.wolfram.com/RhombicTriacontahedron.html

CAROLYN YACKEL

Mercer University

laser-cut paper
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Video showing local isometries, rotating and translating paper on the surfaces: 
https://www.youtube.com/watch?v=JRd928WpY9w

AARON ABRAMS & 
STEPAN PAUL

Washington & Lee University; 
Harvard University

homemade paper, 3D-printed 
plastic, molded silicone

We are making paper with constant negative curvature, in order to demon-
strate various features of the hyperbolic plane. A fl at piece of paper has 
zero curvature, a sphere has constant positive curvature, and our paper has 
constant negative curvature. Our project builds on earlier work of Roger 
Alperin, Barry Hayes, and Robert Lang.

We hope that this paper can serve as an instructional tool for college-level 
geometry courses. Our goal is to explore hyperbolic versions of many of 
the things that we can make from fl at paper: straight-edge and compass 
constructions, tilings, origami, and so on. Paper is a natural medium 
for this, as, unlike fabric, it has very little elasticity (so the intrinsic 
geometry is preserved when it is smoothly deformed) and it holds a crease 
(so we can generalize ideas and methods of fl at paper folding to get new 
hyperbolic designs).

We learned a lot of math in the process of creating this paper! For example, 
we needed to learn how to isometrically parameterize the pseudosphere 
(top right) and related constant-curvature surfaces such as Dini’s surface 
(left) from the upper half-plane model of hyperbolic space. This project 
also enabled us to experience hyperbolic geometry in a physical way, which 
off ered interesting surprises despite our existing theoretical understanding. 
For instance, we knew from local isometry theorems that the paper should 
fold over onto itself and fi t perfectly, yet when holding the paper in our 
hands it was hard to believe it would actually work. (It does!)

We are still trying to fi gure out the best way to make this paper. Our fi rst 
attempt used papier mâché, but it was too stiff . Following advice the of John 
Edmark, Rotem Tamir, and others, we improved our process by making fl at 
strips from pulp, then introducing curvature by pressing the strips onto a 
pseudospherical mold (top right) while they were still wet. We hope to make 
larger, sturdier, more robust paper by starting with higher-quality fi bers. On 
the other hand, we have learned that Alba Málaga Sabogal has had success 
making hyperbolic paper from toilet paper fi bers.
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Since mathematical objects are infi nitely precise, it is always 
a little disappointing to cut out some pieces with scissors or a 
bandsaw, fi t them together, and fi nd that they are not quite 
right. The laser cutter eliminates much of this issue because 
it can reproduce a resolution of up to 600 DPI, creating cuts, 
folds, curves, tabs, holes, and other mathematical elements in, 
for all practical purposes, exactly the right spot. 

Of all the techniques presented here, the laser cutter is the 
most dangerous, as it can melt and warp materials, create 
toxic fumes, and start fi res. It must be watched at all times 
when in use, and it is not suitable for children. And yet, if you 
wish to create a physical manifestation of any 2D object, the 
laser cutter is almost certainly the best tool. 

LASER CUTTING
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There are many possibilities for the shape of the universe in which we 
live. To understand these better, topologists often imagine a surface that 
divides the universe into simpler regions. Imagine a surface that is somewhat 
translucent and is sitting in the middle of one of these possible universes. 
As we look out, we see an amazing picture. Because of the way both the 
universe and the surface fold back on themselves, we see diff erent shades of 
light and dark wherever we look, creating an amazingly complex and self-
similar pattern. 

In this piece, we – I, Saul Schleimer, and Henry Segerman – show one such 
view of one such possible universe, laser-cut in acrylic and side-lit with LED 
strips. In particular, this picture represents a small part of the boundary of 
3D hyperbolic space. We view this space as coming from the universal cover 
of some 3-manifold, containing a topologically signifi cant surface. We created 
a depth map based on how many lifts of the surface you pass through as you 
move out a fi xed distance from some point of hyperbolic space toward the 
boundary. 

This is a laser-etched piece of acrylic, with carefully designed lighting to 
illuminate the etching. I had never tried edge-lighting an acrylic relief, and 
thought this would be a perfect way to create a visualization of our results. 
I was surprised at how beautiful it turned out!

There were a lot of experiments to get the lighting eff ect correct. First, I 
built a custom frame that hides an LED strip light. I then learned that the 
acrylic needed to have a clear boundary where it met the frame so that light 
propagated through it. Then I needed to cut the acrylic again, make modifi -
cations to the frame, and so on.

DAVID BACHMAN

Pitzer College

laser-cut acrylic



4948

One of the most tantalizing mathematical illustrations ever 
is what I like to call the “asterisk picture” of the Mandelbrot 
set. Mathematicians had the idea of applying the function 
f(z) = z2 + c over and over, starting with the input z = 0, 
and using each output as the next input. They wanted to 
know what happens to the image, for diff erent points c in the 
complex plane. Using a very early computer in 1978, they 
set it to work on this problem, and for each representative 
point in the box [-2, 2] x [-2, 2], they had the computer print 
an asterisk if the image stayed bounded, and print nothing if 
the image went off  to infi nity. The result was a shape that no 
one had ever seen before. To this day and beyond, exploring 
mathematics through computer graphics continues to elicit a 
sense of surprise and awe.

GRAPHICS
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Further information: 
Wilder Boyden and Frank A. Farris, Polyhedral Symmetry from Bands and Tubes, 

Journal of Mathematics and the Arts, to appear.

FRANK A. FARRIS

Santa Clara University

computer-generated graphic

For years, I have struggled to fi nd good techniques for coloring mathematical 
surfaces with patterns. Coloring a sphere is easy, because it’s so round and 
regular, but the bands in this image have not been easy to color well. My 
goal is to fi nd conformal coordinates on this shape, which means that all 
the angles in the source pattern are portrayed correctly on the surface. 
Conformal coordinates make patterns more recognizable. I heard Steve 
Trettel’s talk “What does a torus look like?” and that sent me back to an old 
project, which involved coloring this set of bands with a wallpaper pattern.

The innovation shown here comes from making the shape in software called 
Grasshopper (a plug-in for an architectural design software called Rhino). 
The good news is that I was able to paste a nice wallpaper pattern onto the 
surface and then make it look nice in Photoshop. The bad news is that the 
coordinates are not conformal: the pattern is indeed distorted.

Grasshopper has a growing community of mathematician users who support 
each other in solving problems, which was very helpful: I had been coloring 
this shape by coloring a gigantic mesh, with approximately one vertex for 
each pixel of the coloring pattern. It really bogged down the computer. 
When I asked the Grasshopper community about it, Daniel Pinker, the 
creator of Kangaroo (another Rhino plug-in), solved my problem perfectly. 
I’ll be working with this new technique for a long time.

It is still a long road to fi nding conformal coordinates on this particular 
structure, but I learned a lot about coloring tori. Surprisingly, the best way 
to fi nd coordinates on donut shapes is to look for them in four dimensions, 
where they lie nicely on the 3D sphere.

The alert reader will see that there’s an error in the image shown here: the 
pattern fails to match on the left side of the higher horizontal band. After 
all my Facebook friends had told me how beautiful it was, two mathematical 
artists looked at it for two seconds before saying, “Oh, but there’s a mistake 
right there!” It’s wonderful to be working in a community of people who take 
time to look closely at things.
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This image shows part of an orbit of a group of matrices over the ring of 
integers in an imaginary quadratic fi eld. In particular, it is the projective 
special linear group over the the Gaussian integers. These matrices act as 
Möbius transformations, taking circles to circles. Asmus Schmidt used such 
arrangements of circles as a way to break up the complex plane into pieces, 
for the purposes of a continued fraction algorithm.

Schmidt’s original work took place before the advent of powerful computer 
graphics systems, and his papers included some fi gures showing only half a 
dozen or a dozen circles, illustrating only one level of the recursive structure. 
I wanted to more fully understand the structure, and I wanted to fi nd out 
what happened in other imaginary quadratic fi elds. Using computer graphics 
allowed me to work interactively, changing parameters and redrawing 
frequently. It was also important to me to be able to print out the pictures 
and work with colored pencil, ruler, and compass on top of them. For 
example, in some pictures the human eye picks up “ghost circles” that appear 
to fi t in the geometry but are missing. I measured these with a ruler and 
compass to conjecture their exact form, and then proved that they exist.

Easy access to exploring these pictures led me to conjecture and prove 
a variety of things about the relationships between the arithmetic of the 
imaginary quadratic fi eld and the pictures themselves. For example, the 
circle arrangement is connected if and only if the fi eld is Euclidean.

The experience of programming the pictures was itself enlightening: for 
example, a naive algorithm exploring the Cayley tree results in varying reso-
lution in diff erent parts of the picture, and inadvertent congruence conditions 
add or remove extra layers of circles. Often, errors in coding led to useful 
insights. Later on, I worked harder to make the pictures more beautiful, and 
learned about color choices and vector graphics, among other things.

Further information: Katherine E. Stange, Visualizing the Arithmetic of 
Imaginary Quadratic Fields, International Mathematics Research Notices, 
Volume 2018, Issue 12, June 2018, pp. 3908–3938.

KATHERINE E. STANGE

University of Colorado Boulder

computer-generated graphic
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People like to say that hyperbolic space is cold, dark and 
lonely, but what would it really be like to wander around in 
hyperbolic 3-space? As soon as computers had the requisite 
capabilities, mathematicians were making videos to commu-
nicate what mathematical objects would look like in real 
life, and to visualize what it would be like to move through 
diff erent geometries. Now that processors are much faster and 
computers have excellent graphic capabilities, it is possible 
not only to make a video, but to make an interactive experi-
ence in which people can direct their own movement through 
these spaces in real time, in virtual reality. 

VIDEO AND 
VIRTUAL REALITY
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In 2018, Olga Frolkina of Moscow State University published a proof of the 
impossibility of packing an uncountably infi nite number of Möbius strips 
into an infi nite 3D space. Evelyn Lamb wrote about the proof for Quanta 
Magazine, and I created this animation to accompany the article. This is 
visual storytelling that hints at Frolkina’s result rather than an accurate 
simulation. Since it’s impossible to render an infi nite number of anything, we 
had to make do with “a lot” of Möbius strips in a fi nite space.

Working in 3D simplifi es and expedites certain processes, leaving more time 
for creativity and ambitious ideas. I would not have tackled this project if I 
had to draw out dozens of Möbius strips and then animate them frame by 
frame! Using Cinema 4D, I modeled just one strip, cloned it, and then ran 
a simulation. Also, in 3D software it’s possible to both simulate real-world 
dynamics accurately and ignore them at will, so you can create situations 
that are believable but physically impossible – like magic!

Despite being a mathematically-inclined artist, I’m not a mathematician 
and was not previously aware of this type of packing problem. Although 
I wouldn’t expect anyone to learn much solely from my artwork, I hoped 
that it would spark intrigue and invite people to read about this fascinating 
research.

Coincidentally, the diffi  culties I encountered in creating this illustration 
echoed the conclusions of the mathematical result – it really is challenging 
to cram Möbius strips into a 3D space (albeit for diff erent reasons). In theory 
this should have been straightforward to simulate. In practice, though, all 
sorts of weird stuff  happened. The Möbius strips would glitch and jiggle 
around wildly, sometimes they’d pop right through the container like ghosts 
through walls, and getting them to look suffi  ciently smushed and then pop 
out dramatically was no picnic either. I had to keep tweaking various param-
eters to get the whole system to behave. But this is a common enough 
occurrence – there might as well be some kind of pseudo-scientifi c “law”: 
“projects that seem simple are usually much more complicated than one 
might anticipate.”

The article with the animation: Evelyn Lamb, Möbius strips defy a link with 
infi nity. Quanta Magazine, February 20, 2019. 

OLENA SHMAHALO

Quanta Magazine

computer-generated animation



8382

The best way to understand a 3D object is to hold it in 
your hands. But how can we create an accurate model of a 
surface or another mathematical object? A hundred years 
ago, mathematicians made models of surfaces out of plaster, 
supported by metal rods. Many mathematics departments 
and mathematical institutes are fortunate to have collections 
of such surfaces, which are beautiful and instructive. Exactly 
how people constructed the molds to create these surfaces is 
somewhat mysterious.
 
These days, it is possible to 3D-print objects that represent 
mathematical surfaces, by using math software to plot the 
surface and then using 3D-printing software to transform the 
plot into a solid, printable object. Although the process is 
simple in theory, 3D printing is a relatively new technology, 
and as such there are usually technical hurdles to resolve 
along the way, so any project usually requires several 
failed attempts before the result succeeds in realizing the 
mathematician’s vision.

3D PRINTING
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Gallery of more images: https://silviana.org/gallery
Further information: Silviana Amethyst, Daniel J. Bates, Wenrui Hao, Jonathan D. 

Hauenstein, Andrew J. Sommese, Charles W. Wampler, Algorithm 976: Bertini_
Real: Numerical Decomposition of Real Algebraic Curves and Surfaces, ACM 
Transactions on Mathematical Software, 44(1), [10]. 
https://doi.org/10.1145/3056528

This set of 3D prints illustrates singular algebraic surfaces. I work on 
solutions to the problem of physically visualizing nodal singularities, where 
two or more pieces come together at a single point. My main motiva-
tion for 3D-printing them is to illustrate the output of the algorithm for 
numerical real cellular decomposition implemented in my computer program 
Bertini_real. It computes a union of “cells,” each equipped with a generic 
point and homotopy that can be used to compute additional points on the 
real part of a complex variety. This output is naturally 3D-printable.

Using fused fi lament fabrication (FFF) with thermoplastic polyurethane 
(TPU) is the right way to produce these objects for a number of reasons. FFF 
can be done at home or in the offi  ce with an inexpensive 3D printer, with no 
chemically dangerous materials or supplies. The only post-processing step 
is removing support material, and, since TPU is fl exible, printed surfaces 
can have much thinner connections at nodal singularities without inevitably 
breaking. Furthermore, the very small earring-sized prints are robust enough 
to be worn daily, and the skeleton-like object is seemingly delicate but readily 
able to be carried in a backpack or pocket. I continue to learn about how to 
engage the public in my research by having cheap, non-breakable objects to 
show them while wearing earrings at the grocery store. TPU is a challenging 
material to work with, requiring a high quality hot end and a commitment 
to printing very slowly, but it’s incredibly rewarding.

My early versions of prints of the Barth sextic and other nodal surfaces, such 
as those coming from the Herwig Hauser gallery of algebraic surfaces like 
Octdong, broke either during support removal or transport for show. Many 
of my most experimental polylactic acid (PLA) prints are thus doomed to 
live forever trapped in their support material, since it’s so far inside a cavity 
in the surface I would destroy it in completing it, or because the material 
connection between pieces is so small. 

SILVIANA AMETHYST

University of Wisconsin‒Eau Claire

3D-printed plastic
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Video of the object in action: https://youtu.be/VX-0Laeczgk
Further information: Henry Segerman, Visualizing Mathematics with 3D printing, 

Johns Hopkins University Press (2016).

Stereographic projection is a map from the sphere to the plane. Place a 
sphere on the plane, and draw a straight line from the north pole of the 
sphere down to the plane. The line goes inside the sphere, hits the sphere, 
then continues on to hit the plane. Stereographic projection sends the point 
on the sphere to the point on the plane. This is precisely what the light rays 
do, so the grid pattern on the plane is the stereographic projection of the 
pattern on the sphere.

I chose to illustrate this to fi ll a gap in my book Visualizing Mathematics 
with 3D Printing.  I already had some prints showing the “3D shadow”  you 
get as the result of a higher-dimensional version of stereographic projection: 
from the sphere in 4D space to 3D space. So I needed to explain what stereo-
graphic projection is, and the lower-dimensional version seemed like it would 
be easier to understand.

3D printing has a lot of nice features – it can be very precise, which I needed 
in order to get a good shadow. A print is also physical – you can touch and 
play with it, unlike a computer graphics render. Also unlike a computer 
render, there’s no way to “cheat.”  People are rightly suspicious that some 
eff ect could be faked with computer graphics, but they (think they) under-
stand everything about a piece of plastic and a fl ashlight – so it must be a 
real phenomenon.

I started with the design on the plane, then made cones from the design 
up to the north pole. Then I used the cones to cut out the windows. There 
are some tricky issues to do with the thickness of the sphere. Ideally, the 
sphere would have zero thickness, but of course that would be impossible 
to print. Cutting out the cones works, but leaves very sharp angles near the 
north pole of the sphere. So I needed to cut a second time to remove these 
sharp angles.

HENRY SEGERMAN

Oklahoma State University

3D-printed plastic
...plus a fl ashlight
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More than anything, my work illustrates the human brain’s remarkable 
ability to fi ll in missing information as it works to make sense of the data 
it receives from the surrounding world. By varying the thickness of piping 
generated along the sixth iterate of Hilbert’s famous space-fi lling curve, I 
have rendered Hilbert’s 2D portrait as a 3D object. Using a Python script 
within the modeling program Rhino, my code reads in an image and uses 
pixel data to generate rectangular piping along the curve. The width of the 
rectangular profi le of the piping at a point depends on the intensity of the 
pixel at that point; it is wider when the intensity of the pixel is lower (where 
the image is darker) and thinner when the intensity of the pixel is higher 
(where the image is brighter).

I am new to 3D printing, so I chose this medium in large part to gain 
expertise in the modeling and printing processes of a 3D object. I worked in 
stages, fi rst learning how to print a Hilbert curve with square piping, then 
incorporating a rectangular profi le with variable width. I used a Python 
script within Rhino to carry out the process, reading in image data from the 
famous (cropped) picture of Hilbert in his white hat.

I created this portrait using the sixth iterate of the Hilbert curve, which 
I constructed in pieces – printing off  16 subsquares of the curve on an 
Ultimaker 3. Each subsquare is approximately fi ve inches in width, and they 
were generated using the fourth iterate of the Hilbert curve. Hoping to render 
a higher resolution of the image, I was initially planning to generate the 
portrait using the seventh iterate of the curve. However, such an approach 
would have involved well over 140 hours of printing.

I decided I was happy with a lower resolution, which may require some 
squinting on the part of the viewer. However, the precision improves dramat-
ically when the image is scaled down (see thumbnail top right). An unex-
pected discovery was the diff erence in fi nish and texture between the top 
of each printed curve segment and the bottom. Preferring the shiny fi nish 
of the bottom, I ultimately decided to print each subsquare of the curve 
upside down.

JUDY HOLDENER

Kenyon College

3D-printed plastic

Further information: Judy Holdener, Hilbert’s Portrait via his Space-Filling 
Curve. Proceedings of Bridges 2020: Mathematics, Music, Art, Architecture, 
Culture (2020), to appear.
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For more sculptures, and to purchase them: https://math-sculpture.com/
Further information: Oliver Labs, Straight Lines on Models of Curved Surfaces, 

The Mathematical Intelligencer, Volume 39, (2017), pp. 15–26.

These are two so-called cubic surfaces: the points satisfy a certain equation 
in x, y, z of degree three. These are some of the most fascinating objects in 
the intersection of algebra and geometry, and they are from the 19th century.

I have created many diff erent 3D-printed versions of such objects over the 
past 20 years. Classical sculptures show them in plaster, and my modern 
versions, which are exhibited in museums, are usually 3D-printed in white 
plastics. But these objects in gold-plated brass visualize their fascinating 
geometry in a much more obvious way, mainly because of the refl ections of 
the material. In particular, in some interesting light situations with lighter 
and darker colors around, these refl ections yield interesting visual eff ects on 
the surfaces of the sculpture. The curvature of these surfaces is much more 
interesting than you might think when just computing them, and printing 
them in brass allows us to observe these features.

Over the years, I have created many diff erent versions of cubic surface sculp-
tures using 3D printing, until fi nally, now, I like them. Earlier versions I 
created consisted of the part of each surface lying inside a certain sphere. 
This is a natural way to cut a fi nite part of an infi nite object – at least when 
one does not know much about the object and wants to focus a region around 
the origin. But I worked with these objects for a long time, and thought a lot 
about which representation in space I prefer. My fi nal choice is close to the 
classical one: cutting by a cylinder. But the decision about the position and 
size of the cylinder is not always an obvious one, and making this decision 
has been quite time-consuming for some of the cubic surfaces, as has the 
choice of the exact equations.

OLIVER LABS

MO-Labs

3D-printed gold-plated brass
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More of my work: https://www.timeatihanyi.com/
Information about 3D-printed sculpture: https://www.sliprabbit.org/studio
CoCalc is a web-based platform for computational math, founded by mathematician 

William Stein: http://cocalc.com/

This piece is an illustration of elementary cellular automata, made from 
3D-printed ceramic. A cellular automaton consists of a grid of cells, in 
which the state of each cell depends on the states of those around it. Simple 
examples of cellular automata are Pascal’s triangle, which has rows of 
numbers each of which is the sum of the two above it, and John Conway’s 
Game of Life, in which each square in a grid is colored white or black at 
each time step, depending on the colors of the cells around it in the previous 
time step.

I’m not a mathematician, so I learned everything about cellular automata 
through this project. Once I was doing the work and the research, I started 
to be even more interested in exploring complex systems that are based on 
iterating simple rules. I think about these rule-based mathematical systems 
as games that can be played for an infi nitely long time. 

My workfl ow from the math to the object can be summarized by the following 
steps: After picking the game rules, we coded them in Sage, using CoCalc 
(see link below). I worked on coding this with mathematician Sara Billey 
from the University of Washington, then altered Billey’s code-kernel with the 
help of Daria Mićović. The code generated a 2D plot of a distribution matrix 
in black and white. We then used a 3D-modeling program, Rhino, to turn 
this matrix into printable 3D geometries of cubes and cylinders. 

This process required careful calculations and many tests, which were 
reverse engineered from the relationship between the printing layer height, 
nozzle size, and cell size, and the desired scale of the fi nished object.
A precise refl ection of the original matrix was my main goal, refl ecting on the 
algorithmic nature of the fi rst half of the process. On the other hand, I enjoy 
seeing how physical reality – the qualities of the material and the physics 
of gravity, time, etc. – makes subtle unexpected changes on the otherwise 
perfect model.

I work by testing and constantly refi ning until I have a very solid prototype 
that can be 3D-printed reliably. Still, I might lose 50% of the pieces because 
what I’m asking from the fragile porcelain is kind of diffi  cult already. 

TIMEA TIHANYI

Slip Rabbit Studio

3D-printed ceramic
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Linkages, tensegrities, and other mathematical constructions 
are plenty interesting to study in theory, but it’s far better to 
construct them, hold them in your hands, and see how they 
move. As you will see, you can make an illustrative mathemat-
ical object out of just about anything.

MECHANICAL 
CONSTRUCTIONS & 
OTHER MATERIALS
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This is a hyperboloid, cut from a brick.

This item was the result of a project with Nick Bruscia and Dan Vrana from 
University at Buff alo and OMAX corporation, who make the water jet. The 
challenge was simply to explore what was possible with a fi ve-axis water jet. 
As the cutting “tool” is a straight (well, spiraling) jet of water, ruled surfaces 
are the natural thing to start experimenting with.

A surface is ruled if, for every point on the surface, there is a line through 
that point that is completely contained in the surface. A hyperboloid is a 
ruled surface, so to cut it out we need the jet of water to follow the ruling 
lines. This object therefore starts as an illustration of an application of 
geometry: how to control and think about the forms that can be made by 
controlling the form of a general tool.

It also presents a compelling version of a classic mathematical object. The 
surprising material (brick) draws you in, with the question of how it could 
be made. Even knowing the tool used might not help, as the curved surface 
seems impossible to make with such a straight tool. This leads directly to an 
understanding of the behavior of ruled surfaces and the hyperboloid.

EDMUND HARRISS

University of Arkansas

Waterjet-cut brick
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This is a large window, about 30 feet wide (bottom image), installed at the 
Mathematics Tutoring and Teaching Center at the University of Arkansas. 
It shows a self-similar hierarchical pattern in the plane, made by a recursive 
tiling substitution rule: all of the arcs are copies of one another, and each 
arc sits beneath four smaller arcs, always in the same manner. Conversely, 
each arc is one of four sitting above a larger arc, themselves a group of four 
upon an even larger one. In the mathematician’s mind, this continues forever, 
smaller and smaller, and larger and larger, ad infi nitum, always in a regular 
manner. 

I made this image in Adobe Illustrator. When drawing a mathematical illus-
tration in such a program, the main task is fi guring out how to do the 
drawing, coming up with a process that will give the desired result. The 
mathematical illustrator must be willing to start from scratch several times, 
refi ning this process. I drew this window four or fi ve times over, ultimately 
leading to a simple method that was accurate to 1/100th inch across a nearly 
30 foot span.

The complexity of the details of the drawing was severely restricted by its 
exponential growth each scale of refi nement – as drawn, the illustration 
nearly overwhelmed my computer!

I work with tiling substitution rules in my research, and the opportunity to 
draw this window led me to explore this one. There’s a long literature on 
how undecidability and other aspects of the Theory of Computation arise 
as matching rules on these hierarchical tilings, and certain aspects of this 
particular system seem to point in some new directions for “programming” 
in these tilings.

The design was printed in three layers: a sandwich of two layers of colored 
ink around a layer of white ink. The central white layer was printed in 
various opacities, refl ecting light and color in some areas, and translucent in 
others, with bright zings of color moving through the window. 

CHAIM GOODMAN-
STRAUSS

University of Arkansas

laminated glass with printed 
interlayer
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This is a mechanical illustration of the “Dirac belt trick” or “plate trick.” The 
central cube rotates continuously around a vertical axis, yet it is connected 
to the fi xed outer frame via a sequence of hinge joints, each pivoting by at 
most 45° each way. The arm returns to its original state after every two 
complete turns of the cube. It can serve as an anti-twist mechanism: one 
can run a piece of thread or an electrical wire along the arm, fi xed to the 
cube and the frame at its ends, which turns continuously with the arm, yet 
never gets twisted up. This refl ects the two-to-one map from the (simply 
connected) space of unit quaternions to the (not simply connected) space 
of 3D rotations. To my knowledge, this is the fi rst mechanical linkage that 
demonstrates the phenomenon. The rotation can be powered by an electric 
motor or by turning a handle.

Lego is the ideal medium for experimentation with mechanisms. One can go 
from an idea to a working model in minutes, and then to a more polished art 
piece with a bit more investment and eff ort.

I had wondered for some time whether such a linkage was possible. When I 
had the idea for the particular mechanism, it was not all clear to me whether 
it would work, even theoretically. The Lego model quickly provided the 
answer. Moreover, the model has provided new insight into the mathematical 
and physical phenomenon: the arm can be separated naturally into upper 
and lower parts, each of which on its own moves in an intuitive way; all that 
remains is to combine them.

ALEXANDER HOLROYD

University of Bristol

Lego construction pieces

Video of the object in motion: http://youtu.be/byi5Gzjc04Q
Double version with lights: https://youtu.be/1x_oQv_qj_U
Further information: https://en.wikipedia.org/wiki/Plate_trick



151150

One of the great joys of a career in mathematics is the oppor-
tunity to sit with a problem for a long time. Over the months, 
years and decades, our perspective on a mathematical idea may 
change several times, so that the way we come to understand 
it later is very diff erent from the way we initially learned it. 
When we personalize a problem, an object, or an idea in this 
way, we own it and, in so doing, we give it new life. After all, 
no mathematical idea can be said to “exist” in its own right; 
an idea only exists in the minds of those who understand it. 

MULTIPLE WAYS 
TO ILLUSTRATE 
THE SAME THING
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Further information: 
Michael Bader, An Introduction with Applications in Scientifi c Computing, Springer-

Verlag Berlin Heidelberg (2013).
Doug McKenna, Hilbert Curves: Outside-In and Inside Gone, Mathemæsthetics, Inc. (2019).

ROGER ANTONSEN

University of Oslo

laser-cut wood, paper, and 
mirrors

In order to understand something, we should look at it from diff erent 
perspectives. The Hilbert curve is a continuous fractal space-fi lling curve 
fi rst described by the German mathematician David Hilbert in 1891. There 
are several diff erent but equivalent ways of defi ning such curves: One way is 
“external” or “plotter-based,” given by absolute directions: up, down, left, and 
right. Another is “internal” or “turtle-based,” given by commands like “turn 
left” or “move forward” without any knowledge of absolute direction. Here are 
some illustrations of both.

Top left: This shows three iterations of the curve, illustrating the recursive 
step from one level to the next, created with a laser cutter. Laser cutting 
opens up an enormous space of possibilities by its extreme precision.

Top right: This is a tiling system, with only three types of tiles that trace 
out the curve. The tiles correspond precisely to the instructions “turn left,” 
“turn right,” and “move forward.” These wooden tiles were created with a 
laser cutter and colored by hand.

Bottom left: This is a rendition in paper of a Celtic knot: a 192-crossing, 
3-component Brunnian link. Each strand has its own color and is equivalent 
to the unknot. If any one of the strands is removed, the other two are left 
unconnected. Because strands are overlapping, I cut this from three diff erent 
pieces of paper and braided them together. Paper is a fun medium, but also 
very fragile. I made early versions with a mechanical paper cutter, but had 
better luck with a laser cutter.

Bottom right: This is a 52-mirror labyrinth, with a “laser beam” that traces 
out the curve. The top layer of the base has slits precisely cut to hold the 52 
mirrors so that their refl ective back faces are on the appropriate diagonals. 
The symbolic “laser beam” consists of a red piece of paper resting on a 
wooden platform of the same shape. This illustrates the internal point of 
view, as the “laser beam” has no knowledge of absolute direction, and the 
mirrors (or their absence) serve as the local commands. Originally I wanted 
to use an actual laser beam to trace out the curve, but the mirrors absorbed 
too much light, and the beam was invisible after a dozen bounces.
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These show periodic billiard paths on the regular pentagon: You imagine that 
you have a pentagon-shaped billiard table, and you shoot the ball so that it 
bounces around, eventually returning to where it started and repeating the 
same path forever. We studied and classifi ed all of the periodic billiard paths 
on the pentagon, of which there are (countably) infi nitely many, and we also 
wrote a program in Sage to draw them. 

Over the past couple of years, we have tried multiple ways of illustrating 
these paths. The simplest way is just to draw the path itself, as in the upper 
left; this is laser-engraved in wood, which allows you to draw a very intricate 
path. Incidentally, the laser follows the path of the billiard as it engraves the 
path, and it’s interesting to see the pattern emerge in real time.

Next, we thickened up the path and removed the negative space, as in the 
upper right; this is 1/8-inch laser-cut acrylic plastic. While this requires a 
much simpler trajectory, this method emphasizes the path more. Diana has 
made small versions of this into dangly earrings, which are excellent conver-
sation starters about our research.

For the picture in the lower left, you imagine that when the path hits the 
edge of the table, it changes color, from red, to blue, to red, etc. To do this, 
Diana used clear acrylic with protective paper adhered to both sides, and 
laser-engraved the even-numbered pieces of the path on one side and the 
odd-numbered ones on the other side. Since the laser beam is very narrow, 
she engraved ten nearby parallel paths, removing the protective paper in 
strips. At this point, the protective paper only remained in the negative 
space. Then she painted one side red and the other side blue, and removed 
the painted paper, to leave only the painted path. Removing the paper was 
much more painful and tedious than expected, but the result is beautiful.

Lastly, we noticed that the path partitions the pentagon in a way that is 
two-colorable, so we colored the regions black and white (bottom right). We 
coded this on a deadline: when we started, Diana had a train to catch in 30 
minutes, and we managed to produce a working version before she had to 
leave. This picture de-emphasizes the path but raises interesting questions, 
like whether the ratio of black to white might approach the golden ratio.

DIANA DAVIS & 
SAMUEL LELIÈVRE

Swarthmore College; 
Université Paris-Saclay

laser-cut acrylic and wood, 
computer-generated graphics

Further information: Diana Davis and Samuel Lelièvre, Periodic paths on the 
pentagon, double pentagon and golden L, preprint (2019).
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Surfaces with negative curvature are familiar in everyday life: a surface has 
negative curvature at a point if it is saddle-like there, and the more negative 
it is, the more extreme this saddle is. A surface with negative curvature is 
ruffl  y, like lettuce or curly kale, and has a tremendous amount of surface area 
for the volume it occupies. Though a lot of the mathematics of these surfaces 
has been well understood for more than 150 years, there remain many open, 
unexplored questions about just how these surfaces actually sit in space and 
the dramatic changes they undergo when they are manipulated. Partly, this 
may be because there aren’t many ways to actually build such a surface – 
crochet (see pages 17 and 25) is one technology – and mathematicians 
haven’t generally played with many physical examples. 

Top: This surface of constant negative curvature is made out of annular 
strips connected edge to edge. Eugenio Beltrami made a model like this 
one out of paper, more than 150 years ago! But that is an ineffi  cient use of 
material. It’s impossible to cut very many annular strips from a fl at sheet 
without a great deal of waste. Straight strips are far more effi  cient, but strips 
of fl at materials such as steel or paper can only be bent in the direction 
perpendicular to the surface, and the strip must remain a geodesic on any 
surface it sits upon. But foam strips are squishy and can be bent in other 
ways, so they are just right for this piece. The pieces for this were cut using 
a router on a CNC machine, which creates a lot of dust, so it would be much 
better to invest in a CNC knife that cuts cleanly.

Bottom left: This is a spherical piece of the gyroid, an infi nite periodic 
minimal surface. The gyroid has one of the more fascinating of the 3D 
Euclidean discrete symmetries – it is diffi  cult to understand even when you 
are looking at it! Steel is solid, durable, and upgrades a piece. Mathematical 
illustrators should know: Welding is easy, and basic metal work is a fast and 
forgiving medium! (Welding well is another matter.) Because straight strips 
of steel do not bend into annular ones, these straight strips of steel lie along 
geodesics on the gyroid.

Bottom middle and right: These are surfaces with constant negative curvature 
made from fl at strips of paper and steel, respectively. The steel object is 
about ten times the height of the paper one!

Further information: Daina Taimina, Crocheting Adventures with Hyperbolic Planes: 
Tactile Mathematics, Art and Craft for All to Explore, CRC Press (2018).

CHAIM GOODMAN-
STRAUSS

University of Arkansas

Ethylene-vinyl acetate (EVA) 
foam, steel, paper
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Hsu, Catherine  41
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