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Preface

The study of mathematical billiards is a beautiful field connecting

many simple objects in surprising ways: squares, rational numbers,

paper folding and unfolding, and symmetries, to name just a few. Its

ideas are accessible to students at any level. I’ve written this book

so that more instructors can create, and more students can take, a

one-term introductory billiards course. I’m glad you’re here.

I have successfully used this book for a course for undergraduates,

and a course for advanced high school students. This book has also

proved to be a great introduction for a graduate student seeking a

working introduction to billiards. The main prerequisite knowledge

for this course is high school geometry. Representing transformations

of the plane by 2 × 2 matrices and a familiarity with writing proofs

are two other skills that will be helpful. While proof writing is an art

that takes some time to master, 2× 2 matrix transformations require

just a short primer, and you will find this in Appendix A.

I designed this book for a one-semester or one-trimester course.

The first four chapters comprise the core of the book, and the fifth

chapter contains special topics. There are hands-on activities at the

end of the first three chapters, but only the content of the first chapter

is required in order to do them, and they do not contain necessary

content for later work.

xiii
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How to learn from this text. Work on the problems! Have you

heard of “experiential education,” where you go out into the field and

learn things by doing them? You can think of this as an “experi-

ential education billiards book.” You will find yourself actively do-

ing things – drawing pictures, making color-coded diagrams, cutting

things out and folding them up – and these experiences will comprise

your billiards education. When mathematicians explicitly compute

an example, they call it “getting your hands dirty.” In the course of

having the experiences outlined by the problems, you will get your

hands dirty many times over, building your understanding with each

experience.

Interspersed between the problems are paragraphs of explanation,

telling you about some of the people who have traveled this journey

before you. The people profiled in each section of this book have

spent many hours drawing polygons on bits of paper, labeling the

edges, drawing line segments, counting and calculating – and through

this kind of experience, they have built up humanity’s understanding

of billiards and flat surfaces, bit by bit. Throughout the book, I’ve

chosen the convention of referring to everyone by their first name, to

make them seem as approachable in print as they are in real life.

I hope that you have people on this journey with you: your class-

mates, your instructor – people you can talk with about your ideas

as you work on the problems. Other people are a tremendous re-

source, as they have ideas and insights that are different from yours,

come up with different examples, and ask you questions you’ve never

considered before.

So let’s get to it! Approach each problem as an exploration. Get

out your colored pens and your ruler, and try things. Draw pictures

of several examples, as different from each other as possible. Think

about earlier problems and what they might reveal about the one you

are working on. Believe that you have all the tools necessary to solve

the problem, and try lots of things as you claw towards understanding.

The problems in this text. This style of curriculum is integrated:

rather than a single problem set with many problems about continued

fractions (for example), problems on each topic are sprinkled across
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many days, gradually increasing in sophistication. This way, students

have a chance to discuss and understand each problem on a given

topic before moving on to a harder one. For this reason, it’s impor-

tant to leave each class understanding the previous night’s homework

problems, as the next set of problems usually builds directly on them.

Several of the problems are marked with the word “Challenge,”

to indicate that their level of difficulty is higher than the rest. These

require more time and energy, and more original ideas, than the rest of

the problems. Most of the problems in Chapter 5 are also challenging.

If you are teaching this course, work to bring out students’ ideas

about the problems – work to help them absorb as much as they can

each day. If you are working through this book, give yourself time to

explore each question.

Materials needed. It is essential to have the following tools readily

available to you while you are working:

• a set of colored pens or pencils

• graph paper

• scissors

• tape

• ruler

• tissue paper, string, bagel, thin cord, board, hammer and

nails.

How to teach from this text. The way I’ve used this book for a

50-minute class is as follows:

• First day of class: do §1 problems in class. For homework,

students do §2 problems.

• Second day of class: students spend class time discussing

their solutions to §2 problems. For homework, students do

§3 problems.

• Third day of class: students spend class time discussing their

solutions to §3 problems. For homework. . .
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Depending on your students and your class duration, you may need

to assign less than a whole section, or more than one section, on each

assignment, which is totally fine. I do recommend that you think

carefully before assigning two problems with very similar content from

two different sections at the same time, as the problems build off of

each other, so it may be helpful to discuss the earlier problem with

other people before embarking on the next one.

The problems teach all of the material; no lectures are necessary.

I wrote the problems to be hard enough that most students will not

be able to solve all of the problems on their own, so that students

have something to discuss with each other when they get to class.

If you read a problem in the book and think, “Hmmm, that seems

challenging! I’m not sure how to do that,” you’re doing it right.

For more guidance on how to run such a class, see Appendix B.

My goal for this book. There are so many beautiful things in the

study of billiards and flat surfaces, and I’ve put all of my favorites in

this book: the continued fraction algorithm, the folded-up flat torus,

the Arnoux-Yoccoz IET. . . and the people in the billiards and flat

surfaces community. I hope that by working on the problems, you’ll

feel like you really understand something about billiards, and I hope

that by reading about the people, you’ll feel like you are part of the

billiards community.

Diana Davis
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Chapter 1

Introduction to billiards
in many forms

Six parallel periodic paths on the square billiard table.

In life, billiards is a game where a ball bounces around inside a rect-

angular table. In mathematics, we’ll extend the notion of billiards

considerably. In this first chapter, we’ll meet billiards inside polyg-

onal tables, billiards inside smooth tables, and billiards outside of a

table. The idea of the first chapter is to introduce all of the big ideas

1
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of the course, in their simplest forms. We will understand the sim-

ple case very well, and then later when we study more complicated

things, we will have a solid background of understanding to build on.

In this chapter, you’ll learn to draw beautiful, accurate pictures

of periodic billiard paths in a square billiard table. Drawing accurate

pictures is an excellent tool that you can use to understand what’s

going on. I recommend that you draw a picture for every problem,

preferably a really big one.

The most powerful tool in the study of billiards in polygons is

unfolding the billiard table. In its unfolded form, the table becomes

a surface, and the path of the ball becomes an infinite line, which

sometimes closes up into a periodic path. This opens up the study

of linear trajectories on flat surfaces, which is a big area of current

research and a main object of this course. We’ll start with the square

torus surface, and later we’ll study more complicated surfaces.

Another powerful tool is transforming the geometric problem of

a billiard path into a combinatorial problem about the list of edges

that the ball hits. A list of symbols (edge labels) is much simpler

than a picture of a path, and these lists (called bounce sequences or

cutting sequences) have a lot of beautiful structure.

Let’s get started!



1. What are periodic paths and where can we find them? 3

1. What are periodic paths and where can we
find them?

1. Consider a ball bouncing around inside a square billiard table,

as on the left side of Figure 1. We’ll assume that the table has no

“pockets” (it’s a billiard table, not a pool table!), that the ball is just

a point, and that when it hits a wall, it reflects off and the angle of

incidence equals the angle of reflection, as in real life.

(a)A billiard path is called periodic if it repeats, and the period is

the number of bounces before repeating. Construct a periodic billiard

path of period 2 on the square table.

(b) For which other periods can you construct periodic paths?

Figure 1. Billiard trajectories on square and circular billiard

tables, respectively.

DD

2. Now consider a circular billiard table, as on the right side of Figure

1. Again assume that the ball is just a point, and that when it bounces

off, the angle of incidence equals the angle of reflection. Note that in

a billiard table with curved edges, the ball reflects off of the tangent

line to the point of impact.

(a)Draw several accurate pictures of billiard trajectories in a circular

billiard table.
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(b)Consider paths that close up (periodic paths), and also paths that

don’t (aperiodic paths). What is the probability that a billiard path

in the circular table is periodic?

(c)Describe the behavior in general.

They did the math # 1. Diana Davis

In each section of this book, I’ll tell you about someone who has

worked on the math in that section, or who is somehow related to

that section. The first person is. . .me, because I wrote the book.

Hello! I’m Diana. It’s nice to meet you. I love billiards, especially on

polygonal billiard tables, and particularly on regular polygons. You

can see in the picture for They did the math # 1 that I have

a regular octagon billiard table in my office, and I’m pretty excited

about it, though when it comes down to it, I’m more of a regular

pentagon aficionado [15]. I hope you enjoy this book as much as I

do.

By the way, are you having trouble solving the first two problems?

You might be thinking, “I will try to find a solution online.” This
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approach is unlikely to be fruitful, and is very unlikely to fill you

with delight. Let me suggest a more delightful way to solve these

problems: paper, scissors, pencil – and your extremely capable brain!

Make a BIG diagram, big enough to really see things clearly. Then

make another BIG diagram. This is the way to figure things out!

For Problem 2, here’s a suggestion of one way to figure out what’s

going on in this problem. Trace a large circular object, such as a roll

of tape, onto a piece of paper. Use another piece of paper to trace

and then cut out the region between a chord and the circle (in pink

in Figure 2). Trace along the chord it forms. Then move the paper

to the endpoint of the chord you drew, and repeat. Continue until

you get a sense of what is going on.

Figure 2. With such simple tools, I made these awesome

pictures of billiards on a disk!

For Problem 1, I folded my paper on the diagonal, and then cut

off the extra bit to make it square. I cut off a diagonal piece of a sticky

note to make a non-isosceles right triangle. The two small angles of
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Figure 3. Billiards on the square don’t pop as quickly as they
do on the disk, but we love them anyway.

the right triangle are the angles that the trajectory will make with

horizontal and vertical edges of the square, respectively. (Cutting a

piece of paper to get an angle and then using it over and over is easier

than measuring with a protractor every time.) I used my triangle to

make an accurate billiard bounce (Figure 3), which I extended all the

way to the next edge.

My point is: You can do it! If you are having trouble solving

later problems in this book, please see the problem map in the “Hints

for selected problems” section on page 201.
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2. We billiard outside of the box

3. Draw a line on an infinite square grid, and record each time the

line crosses a horizontal or vertical edge. We will assume that the

direction of travel along a line is always left to right. We could record

the line in Figure 4 with the sequence . . . •••••••••••••• . . ., or we

could assign A to horizontal and B to vertical edges, and record it as

. . . BABBABBABBA . . ..

(a)What is the slope of the line in the picture?

(b)Record this cutting sequence of As and Bs, for several different

lines, including one with slope 3/5. Describe any patterns you notice.

What can you predict about the cutting sequence, from the line?

(c)What should you do if the line hits a vertex?

Figure 4. A portion of an infinite square grid for Problem 3.

Caroline Series (They did the math # 2) wrote a series of pa-

pers exploring cutting sequences on the square grid and linking them

to other areas of mathematics [50,51]. We will see that cutting se-

quences are related to group theory and continued fractions; Caroline
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also explained their relationship with hyperbolic geometry. We will

see a little bit of hyperbolic geometry in § 33.

They did the math # 2. Caroline Series

Here are the ways that people typically deal with lines that hit ver-

tices, or billiard trajectories that hit corners of the table:

• Authoritarian: Trajectories are not allowed to hit vertices.

• Minimalist : If a trajectory hits a vertex, it stops.

• Indecisive: The vertex is on both sides: it’s ambiguous.

• Optimistic: If the ball hits the corner pocket, you win!

In any case, we generally consider trajectories that do not hit vertices.

True story: A few years ago when I was teaching this course, I

told my students that we don’t let trajectories hit vertices, and they

were dissatisfied with my explanation. Then two of them went and

played squash together (for real), which is essentially billiards in a

cube. The next day, they said: “now we agree, the ball should not

be allowed to hit the vertex – when the squash ball hits the corner of

the room, it bounces in a totally unpredictable direction!”

To be precise. . . In fact, while the cutting sequence corresponding

to a trajectory that hits a vertex is ambiguous, the forward trajec-

tory itself is not necessarily ambiguous. For example, on the square
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billiard table, nearby parallel trajectories continue to be nearby and

parallel after two reflections (left side of Figure 5). But on the regular

pentagon, two nearby parallel trajectories have very different futures

if they hit different sides of a vertex (right side of Figure 5).

Figure 5. The forward trajectory is ambiguous when the ver-
tex angle does not evenly divide π.

It turns out that if the vertex angle is a divisor of π, the behavior

is like the square, and otherwise, the behavior is like the pentagon.1 In

a squash court, the angle between the wall and the floor evenly divides

2π, so perhaps the issue is that the squash ball has a positive radius,

and the problem arises when the ball hits both walls simultaneously.

Figure 6. Part of an infinite sector billiard table.

DD

4. Consider a billiard “table” in the shape of an infinite sector with

a small vertex angle, say 10◦ as shown in Figure 6. Draw several

examples of billiard trajectories in the sector, calculating the angles

1Thanks to Barak Weiss (# 24) for pointing out this entire issue.
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at each bounce so that your sketch is accurate. Is it possible for a

trajectory to bounce infinitely many times within this picture?

DD

5. Outer billiards. Though it may seem strange to call it “billiards,”

we can also define a billiard map on the outside of a billiard table.

First, choose a starting point p, and a direction, either clockwise or

counter-clockwise. Then draw the tangent line from p to the table in

that direction to find the point of tangency. Double the vector from

p to the point of tangency, and add this to p to get p′, as in Figure

7. Repeat to find p′′, and so on.

Figure 7. Trace this picture into your notebook so that you
can accurately work out the behavior for p, q and r.

(a)Work out the first five or six iterations for the starting points

given in Figure 7, and then describe the behavior in general.
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(b)What is the probability that p returns to its starting point?

(c)What does the set of all the images of p look like? Consider the

case when p returns to its starting point, and also when it doesn’t.

(d)Can you make a periodic path of period 5? Can you make more

than one? If so, how many?

6. Symmetries of the square. If you turn a square 90◦ counter-

clockwise, it looks the same as before. We call a 90◦ counter-clockwise

rotation a symmetry of the square, because after you do it, you have

a square just like the original.

In this problem, we’ll find all the symmetries of the square. Of

course, if you rotate a square by 90◦, it looks identical to the original,

so to keep track of the square’s orientation, we’ll draw an R on it

(Figure 8).

Figure 8. A square. The R is to keep track of its orientation.

(a)Cut out a square and draw an R on one side, as shown, and also

hold it up to the light and trace through a backwards R on the back.

(b)Howmany different symmetries of the square can you find? Record

them in a table like Figure 9.

(c)Do you have all of them? If so, explain how you know.

Figure 9. A table for recording symmetries of the square.
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3. We unfold

DD

7. A powerful tool for understanding inner billiards is unfolding a

trajectory into an infinite line, by creating a new copy of the billiard

table each time the ball hits an edge [64]. Figure 10 shows steps of

the unfolding process for a small piece of trajectory of slope ±2 in

the square.

(a)Draw some more steps of the unfolding.

(b)Draw the complete billiard path in the square: keep going until

it closes up.

Figure 10. Unfolding the square billiard table for every

bounce of a trajectory of slope ±2.

(c)Use the unfolding to explain why a trajectory with slope 2 yields

a periodic (repeating) billiard trajectory on the square.

(d)Which other slopes yield a periodic billiard trajectory?

When we say “a trajectory with slope 2,” we are assuming that

one edge of the square table is horizontal. If our billiard table is

tilted, we just rotate it until it does have a horizontal edge. This

is one way of reducing our problem (to polygons with a horizontal

edge) and making it easier to talk to each other (“slope 2” instead of
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“with the edge, the trajectory makes an angle whose tangent is 2”).

Another way to reduce our work is to only consider trajectories in a

small sector of directions; this is what our work in Problem 6 will do

for us in the future (Problem 41).

It turns out that billiards on the square are related to number

theory, via continued fractions. Continued fractions are an efficient

(and honestly quite fun) way of expressing real numbers as nested

fractions. We’ll play with continued fractions for a while to develop

our skills, and then see how everything fits together a little later.

8. The continued fraction expansion gives an expanded expression of

a given number. To obtain the continued fraction expansion for a

number, say 15/11, we do the following:

15

11
= 1 +

4

11
= 1 +

1

11/4
= 1 +

1

1 + 7/4

= 1 +
1

2 + 3/4
= 1 +

1

2 +
1

4/3

= 1+
1

2+
1

1+
1

3

.

The idea is to pull off 1s until the number is less than 1, take

the reciprocal of what is left, and repeat until the reciprocal is a

whole number. Since all the numerators are 1, we can denote the

continued fraction expansion compactly by recording only the bolded

numbers: 15/11 = [1; 2, 1, 3]. The semicolon indicates that the initial

1 is outside of the fraction.

(a) Find the continued fraction expansion of 3.14 = 157/50.

(b) Find the first few steps of the continued fraction expansion of π,

and explain why the common approximation 22/7 is a good choice.

What is the best fraction to use, if you want a ratio of integers that

have 3 or fewer digits?

(c) Find a rational approximation of the number whose continued

fraction expansion is [1; 1, 1, 1, . . .]. This number, known as the golden

ratio φ, is sometimes called the “most irrational number.” Explain.
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In part (a) you found that the continued fraction expansion of

3.14 is [3; 7, 7]. Is this the best approximation for π that is a ratio

of integers having three digits or fewer? No, part (b) shows that

we can find a better rational approximation by using the continued

fraction expansion, and truncating it at a convenient point. Indeed,

such convergents of the continued fraction expansion give the best

rational approximations for a given size of denominator.

Figure 11. In outer billiards on the square, points bounce

around outside of the square billiard table. We wonder: how

do they move?

9. We can also play outer billiards on polygonal tables. Here, the

“tangent line” is always through a vertex − you can think of sweeping

a line counter-clockwise until it hits a vertex, as shown in Figure 11.

Find the forward orbits of the points p, q and r in the picture.

Can you find any periodic trajectories? Can you find any aperiodic

trajectories? Hint: be accurate. Consider measuring with your ruler.

Actually, don’t use a ruler; use symmetry!
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The outer billiards system was proposed as a toy model for plane-

tary motion: the table is the sun, and the point is the planet bouncing

around it. It is easier to analyze a discrete dynamical system, in which

a planet jumps from place to place, than a continuous dynamical sys-

tem in which planets move smoothly. It is important to know whether

our solar system is stable, or whether the Earth will spin out away

from the sun, or what. Related to this, it was for a long time an open

problem whether there exists a shape of table, and a point outside

the table, such that under the outer billiard map the point eventually

bounces off to infinity. The answer is yes: Rich Schwartz (They did

the math # 3) showed that the Penrose kite has this property [47],

and Dmitry Dolgopyat and Bassam Fayad showed the same for the

half disk [19], both in 2009. The picture shows the author celebrating

Guy Fawkes Night with Rich in Oxford in 2012.

They did the math # 3. Richard Schwartz
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10. The billiard reflection law, linear case. We wish to show that,

when a billiard trajectory hits the edge of the table, the angle of inci-

dence equals the angle of reflection. We will use the Fermat principle:

when the ball travels from point A, to the table’s edge, and then to B,

it follows the (locally) shortest path. We will consider the case when

the ball hits a linear edge of the table. Use reflection (or “unfolding”)

in the edge of Figure 12 to show that the shortest path from A to the

edge to B satisfies the billiard reflection law.

Figure 12. Some options for bouncing off of a linear edge,

and a large amount of white space to allow for reflection.
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4. We learn to draw accurate pictures

11. Building on our work from Problem 7, here’s another way that

we can unfold the square billiard table. First, unfold across the top

edge of the table, creating another copy in which the ball keeps going

(see Figure 13). The new top edge is just a copy of the bottom edge,

so we now label them both A to remember that they are the same.

Similarly, we can unfold across the right edge of the table, creating

another copy of the unfolded table. The new right edge is a copy of

the left edge, so we now label them both B. When the trajectory hits

the top edge A, it reappears in the same place on the bottom edge

A and keeps going. Similarly, when the trajectory hits the right edge

B, it reappears on the left edge B.

Figure 13. Unfolding the square billiard table, and a billiard

trajectory on it.

(a)The partial billiard trajectory shown on the left part of the figure

repeats after six bounces. Sketch in the rest of the trajectory in

each of the three pictures above. What is the corresponding cutting

sequence of As and Bs for the trajectory on the surface on the right

part of the figure?

(b)When we unfolded the trajectory to a line in Problem 7, we cre-

ated a new copy of the table every time the trajectory crossed an

edge. Explain why, in the picture above, just four copies is enough.
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(c) Suppose that you have a rectangular sheet of very stretchy rubber.

You tape together the top and bottom edges (edge A) to create a tube,

and then you curl the tube around and attach the open ends to each

other along their edges (edge B), as shown in Figure 14. Explain.

The result is called a torus, the surface of a donut.

Figure 14. Stretching a flat square into a torus.

The field of mathematics devoted to the study of objects like the

square torus that we just constructed is called flat surfaces. Hundreds

of mathematicians around the world are working on flat surfaces, par-

ticularly in France and the United States. It is currently a “hot”

field, with many papers posted every week with new results. Amie

Wilkinson (They did the math # 4) created a phenomenal anima-

tion showing how, as we did with the square in Problem 11, we can

make an octagon into a flat surface. It is at 26:00 of her Fields Sym-

posium lecture from 2018, available here: https://www.youtube.

com/watch?v=zjccKzHIniw&t=1560s The picture shows Jinxin Xue,

Aaron Brown, Amie, and Clark Butler hiking in Chile in 2015.

They did the math # 4. Amie Wilkinson

https://www.youtube.com/watch?v=zjccKzHIniw&t=1560s
https://www.youtube.com/watch?v=zjccKzHIniw&t=1560s
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A surface is flat if it looks like the Euclidean plane everywhere,

except possibly at finitely many “cone points,” where the angle must

be a multiple of 2π. The torus surface from Problem 11 looks like the

plane everywhere, so it is flat; we sometimes call it the flat torus. As

we will see in Problem 75, the octagon surface from Amie’s talk has

a single cone point with angle 6π, so it is also a flat surface.

DD

12. Show that the cutting sequence corresponding to a line of slope

1/2 on the square grid is periodic. Which other slopes yield periodic

cutting sequences? What can you say about the period, from the

slope? Write proofs of your claims.

13. In Problem 11, we ended up with a trajectory of slope 2 on the

square torus surface. Figure 15 shows some scratchwork for drawing

a trajectory of slope 2/5 on the square torus. Starting at the top-left

corner, connect the top mark on the left edge to the leftmost mark on

the top edge with a line segment, as shown. Then connect the other

six pairs with parallel segments, down to the bottom-right corner.

Figure 15. Scratchwork for drawing a trajectory of slope 2/5

on the square torus. Accuracy is very important here: look
very carefully at the spacing of the ticks.

(a)Explain why, on the torus surface, these line segments connect

up to form a continuous trajectory. Follow the trajectory along, and

write down the corresponding cutting sequence of As and Bs.

(b)Exactly where should you place the tick marks so that all of the

segments have the same slope? Prove your claim.

(c)Create an accurate picture for a trajectory of slope 1/2 and then

3/2. Hint : make sure that all of your segments look parallel.
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Figure 16. A nice picture of a long periodic trajectory on

the square billiard table, plus a “billiard trajectory” where
something has gone wrong.

(d)Draw a picture of a billiard trajectory with slope ±2/5.

(e) Something is wrong with the “billiard trajectory” on the right in

Figure 16. Explain.

DD

14. Prove that every billiard trajectory on the square with irrational

slope is aperiodic.

A note on terminology. In this book, I use the words “path” or

“trajectory” to refer to linear motion on a billiard table or a surface.

Other authors use the word “geodesic” to describe the same thing.

On a surface, a geodesic is the (locally) shortest path between two

points. For example, on a sphere, the geodesic between any two points

is part of a great circle. On a flat surface, geodesics are lines.

ST

15. The billiard reflection law, curved case. We proved this law for

linear boundaries in Problem 10; now we will prove it for curved

boundaries (Figure 17). Prove that, when a billiard ball follows the

shortest path in a billiard table, reflecting off a curved edge, the

angle of incidence equals the angle of reflection. Recall that for a

curved boundary, we measure the angle between the trajectory and

the tangent line to the point of impact.

Hint: Again, we will use the principle that when the ball travels from

point A, to the table’s edge, and then to B, it follows the (locally)

shortest path. One way is to use the multivariable calculus principle

that the gradient vector of the distance function points in the direction
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Figure 17. Some options for a billiard trajectory bouncing

off of a curved wall.

of greatest increase of the function, and to apply this to both A and

B. Another way is to apply an equilibrium tension argument from

physics, imagining the boundary of the table as a wire, and the billiard

trajectory as an elastic string fixed at A and B that passes through

a small ring threaded through the boundary wire.
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5. We do a little bit of group theory

DD

16. Consider again (following Problem 4) a billiard table in the shape

of an infinite sector, with vertex angle α (Figure 18). Use unfolding

to show that any billiard trajectory on such a table makes (a) finitely

many bounces, and in fact (b) at most ⌈π/α⌉ bounces. Hint : Unfold

the sector as many times as you can.

Here the notation ⌈ · ⌉ is the “ceiling” and means “round up,”

e.g. ⌈π⌉ = 4.

Figure 18. The same infinite sector billiard table as before,

encountered now with more tools in our toolbox.

17. In Problem 6, you found the eight symmetries of the square. It

turns out that these eight symmetries form a group, called the dihedral

group of the square. For a set of symmetries to be a group, it must

have the following properties:

(1) It contains an identity element, a symmetry that does noth-

ing;

(2) Each symmetry has an inverse, a symmetry that “undoes”

its action;

(3) It is closed : composing two symmetries (doing one and then

the other) yields a symmetry that is also in the group;

(4) Composing symmetries is associative, i.e. a(bc) = (ab)c for

symmetries a, b, c.

(a)Explain why (1), (2) and (3) hold for the symmetries of the square.

(b)Use your R from Problem 6 to fill in the table in Figure 19, which

is known as a Cayley table. Do you see any patterns? Prove that they

exist.
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Note: it is much easier to see patterns if you denote a symmetry by

its arrow or dashed line; it is much more difficult to see patterns if

you use the oriented R. Use the arrow or dashed line!

(c)Does this group of symmetries commute, i.e. is ab = ba true for

every pair of symmetries a, b? If not, is there any pair of symmetries

that commutes?

Figure 19. A Cayley table for the symmetries of the square.
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18. You will need: colored pens or pencils. Consider again

counter-clockwise outer billiards on the square table (Figure 20).

(a)Points p on the blue lines are not allowed, because their images

p′ are ambiguously defined. Explain.

(b)Points p whose image p′ is on a blue line are also not allowed.

Explain. These are the inverse images of the blue points. Color these

points red. (Color them red! I’m specifying the colors here so that

you can check your answers with someone else.)

(c)The inverse images of the red lines are also not allowed. Explain.

Color these points green. Hint: each one has two pieces.

(d)Color the inverse images of the green points black. Keep going.

Describe the full set of disallowed points.

Figure 20. Coloring the disallowed points for outer billiards

on the square.
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19. Let’s gather some data and make some conjectures.

(a)Construct an accurate (see Problem 13) picture of a trajectory on

the square torus with slope 3/4. Then draw accurate pictures of two

more trajectories with slopes of your choice.

(b) For each trajectory, find the corresponding cutting sequence.

(c)What is the relationship between the slope and the cutting se-

quence?

We discussed in § 2 that we do not allow trajectories to hit ver-

tices. What if you do want to allow a trajectory to hit a vertex, and

moreover, after it hits the vertex, you want it to keep on going? Well,

notice that if you draw a linear trajectory on a piece of paper, at each

point on the trajectory, there is π worth of angle on each side of the

line (left side of Figure 21). Later, we will see that on the sort of flat

surfaces that we are studying, we can have cone points with 4π or

6π or other angles around them. When a trajectory hits such a cone

point and then continues on through, the way to proceed is to require

that there is at least π of angle on each side (right side of Figure 21).

Figure 21. When we decide to allow a trajectory to hit a

vertex, we require that at each point of the trajectory, there
is at least π of angle on each side. (left) In the plane, there

is always exactly π on each side; (right) for a cone point with
e.g. angle 6π, there is considerably more. For a more complete
understanding of what it means to have 6π of angle at a vertex

than this small cartoon, see Problem 100.
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Noelle Sawyer (They did the math # 5) studies these “sin-

gular” trajectories and their geodesic continuations [9]. The picture

shows Naomi Reed and Noelle enjoying breakfast in Austin.

They did the math # 5. Noelle Sawyer
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6. We fold up torus trajectories into billiards
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20. You will need: tissue paper or other thin paper. We saw

that a billiard trajectory on the square table can be unfolded to a

trajectory on the square torus. Going the other way, a trajectory on

the square torus can be folded to a billiard trajectory on the square

table.

(a)Confirm that each trajectory in Figure 22 is a closed path on the

square torus.

(b)Carefully trace the first figure onto a piece of thin paper. Fold it

in quarters as indicated by dashed lines, and then hold it up to the

light: behold, a billiard trajectory!

Repeat for the second figure.

(c) For each picture, find the corresponding cutting sequence on the

square torus, and also the bounce sequence on the square table. Note

any observations.

Figure 22. Closed trajectories on the square torus, for fold-
ing up into billiard trajectories on the square billiard table.

As previously explained, the study of flat surfaces is a very hot

field these days, and many people are proving results about them.

Sometimes, people are perfectly satisfied with results about flat sur-

faces, and they don’t fold up their surfaces to get a billiard table back.

You will not be one of these people.
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In Problem 20, you checked that the two pictured trajectories

are, in fact, closed trajectories on the square torus surface. You might

wonder: how many closed trajectories are there on the square torus?

We’ll count them later, in Problems 118 and 127. Kasra Rafi (They

did the math # 6) has worked on counting closed trajectories on all

possible surfaces of a given type – all surfaces in a given stratum [24].

The picture shows the author and Kasra discovering the wonders of

the candy cabinet at Oberwolfach in 2014.

They did the math # 6. Kasra Rafi
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21. In Problem 8, we constructed a continued fraction algebraically.

Figure 23 illustrates the geometric version of the continued fraction

algorithm for a number x:

(1) Begin with a 1× x rectangle, or p× q if x = p/q.

(2) Cut off the largest possible square, as many times as possi-

ble. Count how many squares you cut off; this is a1.

(3) With the remaining rectangle, cut off the largest possible

squares; the number of these is a2.

(4) Continue until there is no remaining rectangle. The contin-

ued fraction expansion of x is then [a1, a2, . . .] or possibly

[a1; a2, . . .].

Figure 23. The geometric interpretation of the continued

fraction algorithm for 15/11.

(a)Draw the rectangle picture for 5/7 to geometrically compute its

continued fraction expansion.

(b)Compute the continued fraction expansion for 5/7 in the way ex-

plained in Problem 8, and check that your results agree. Explain why

this geometric method is equivalent to the fraction method previously

explained, for determining the continued fraction expansion.
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22. In Problem 18 you showed that for outer billiards on the square,

all of the points on the square grid lines are not allowed. Choose a

point p that is not on one of the grid lines (refer back to Figure 11).

Under the outer billiard map, this point reflects through a sequence

of vertices v1, v2, . . . where each vi is one of the four vertices of the

square table. Explain why every point that is in the same (open)

square as p reflects through that same sequence of vertices.

23. Consider a billiard trajectory in the disk, where at each impact

the trajectory makes angle α with the tangent line to the circle. (Refer

back to Problem 2.)

(a) Find the central angle θ from the circle’s center, between each

impact point and the next one, as a function of α.

(b)Prove that if θ = 2πp/q for integers p and q, then every billiard

orbit is q-periodic and makes p turns around the circle before repeat-

ing.

(c)What happens if θ is not a rational multiple of π?

24. In Problem 13, we put two marks on edge A and five marks on

edge B and connected the marks to create a trajectory with slope

2/5 on the square torus. Do the same with four marks on edge A and

10 marks on edge B, and explain what you get. Hint : Fourteen line

segments is a lot, so use a grid to make your picture accurate!
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7. Automorphisms come for the torus
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25. Prove that a trajectory on the square torus is periodic if and only

if its slope is rational.

26. You will need: string, tape.

(a)Mark two dots on a piece of paper, and tape down your piece of

string on each dot, leaving a lot of slack in the string. With your

pencil, pull out the string until it is taut and trace out all the points

the pencil can reach, as shown in Figure 24, to create an ellipse.

(b)Each endpoint of the string is called a focus of the ellipse. Show

that a billiard trajectory through one focus reflects through the other

focus: the string is a billiard path in the ellipse.

Figure 24. Constructing an ellipse with tape and string.

The reflection property of ellipses is well known, and appears

in architecture as the whispering gallery. Several U.S. state house

rotundas, and the National Statuary Hall at the U.S. Capitol building,

have ellipsoidal ceilings, so if you stand at one focus, you can hear

someone whisper at the other. Since legislative chambers are often

arranged with members of the two political parties on opposite sides,

people can actually sit at one focus and listen to what members of

the other party are saying at the other focus!

An accessible and impressive example of this is in Grand Central

Station in New York City (Figure 25), where although the background

noise is very loud, if you speak into one column, someone on the

opposite column can hear you.
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Figure 25. The whispering gallery in Grand Central Station:
the people in opposite corners are talking to each other.

They did the math # 7. Chandrika Sadanand

One way to hear billiards is to stand in a whispering gallery.

Another is to imagine that each edge of your billiard table has a

different xylophone bar on it, and a billiard trajectory plays an infinite
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song. You might ask: if you listen to the song, can you reconstruct

the shape of the table? Chandrika Sadanand (They did the math

# 7) and her collaborators showed that if you know the set of all

possible such songs – in other words, you know all possible bounce

sequences on the table – this uniquely determines the shape of the

table [20]. This sort of thing is known as a “rigidity” result. The

picture shows Chandrika and the author in Jerusalem in 2018.

DD

27. An automorphism of a surface is an action that takes the sur-

face back to itself, taking nearby points to nearby points. It creates

neither holes nor overlaps, and preserves the surface’s structure: it is

essentially a “symmetry” of the surface. Two types of automorphisms

of the square torus come from symmetries of the square: reflections

and rotations, as in Problems 6 and 17.

(a)Explain what a vertical reflection of the square torus looks like on

the torus surface. You might think about what it does to the surface,

or to a closed path drawn on the surface.

(b)Do the same for a horizontal reflection.

(c)What about diagonal reflections, or rotations?

28. It turns out that there is a third type of automorphism of the

square torus that is not a symmetry of the square: a shear. Figure

26 shows the shear applied to the square at the bottom, and to the

surface in three dimensions at the top, where its effect is to twist the

torus.

(a)Explain the effect of this shear on the surface, and on a trajectory

drawn on that surface.

(b)What 2 × 2 matrix, applied to the “unit square” [0, 1] × [0, 1]

shown in the bottom-left picture, gives the parallelogram shown in

the bottom-middle picture?
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Figure 26. Twisting the 3D torus, shearing the flat torus.
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8. Hands-on activities for Chapter 1

29. The pictures in Figure 27 show linear trajectories on the square

torus, as usual.

(a)Explain why the purple trajectory (left) is a single trajectory,

while the red and blue trajectories (solid and dashed, right) are two

different trajectories.

(b)The red and blue trajectories partition the square torus into two

pieces. In other words, if the trajectories were walls, the smiley person

in the right picture could only explore half of the torus. Justify this

statement.

(c)Also explain why the purple trajectory does not partition the

torus into two pieces – the smiley person in the left picture can explore

the whole thing.

Figure 27. Some closed trajectories on the square torus.
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30. Cutting a bagel into two linked rings.2

You will need: bagel with a large hole in it, serrated knife,

tray to catch the crumbs.

1. Draw the red and blue trajectories on your bagel (left side

of Figure 28).

2. Cut the bagel: The pointy end of the knife should follow

the red trajectory, while the handle follows the blue trajec-

tory. Flip the associated colors halfway through, to keep the

handle on the outside.

3. Separate your bagel into linked rings (right side of Figure

28)!

Hint : Sending the knife all the way through is the theoretical con-

struction, which can work in practice, as it did on the bagel in Figure

28 that I made in 2014. These days, I just cut the “skin” of the bagel,

rather than sending the knife all the way through, and then use my

fingers to tear the soft middle of the bagel in between the skin cuts.

(a)Explain why the procedure above leads to linked rings.

(b)Explain what would have happened if you had cut along the pur-

ple trajectory instead.

Figure 28. Cutting a bagel into linked rings, corresponding

to parallel closed trajectories on the square torus.

2This activity is from George Hart’s website:
https://www.georgehart.com/bagel/bagel.html

https://www.georgehart.com/bagel/bagel.html


8. Hands-on activities for Chapter 1 37

Figure 29 shows bagels with trajectories that correspond to slopes

1/2, 2 and 3/2, respectively, on the square torus. Let’s make some!

Figure 29. Closed trajectories on bagels.

DD

31. You will need: bagel with a large hole in it, marker.

Choose a periodic trajectory, and find a way to mark your bagel to

indicate where to draw the trajectory. One method is suggested in

Figure 30. Then connect up your marks with smooth curves!

Figure 30. Scratchwork for drawing a trajectory on a bagel.

Connection to knot theory: If the bagel disappears, leaving a trajec-

tory corresponding to slope p/q made out of a piece of string, the

result is the (p, q) torus knot, meaning that it goes through the center

p times and around the outside q times.





Chapter 2

Trajectories,
automorphisms, and
continued fractions

In Chapter 2, we will explore more about our main protagonists: tra-

jectories, automorphisms, and continued fractions, and we will gradu-

ally build a grand unifying theory that unites all three of these ideas.

Thanks to Jaden Sides for the idea behind this picture.

39
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9. We apply symmetries to trajectories

32. Given a trajectory on the square torus, we want to know what

happens to that trajectory if we apply an automorphism of the sur-

face. To do this, we can sketch the trajectory before and after apply-

ing the automorphism. Do so for each of the eight symmetries of the

square in Figure 31, as indicated by the curved arrow or the reflection

line, and for the shear. I’ve done one for you.

Figure 31. Automorphisms of the square torus, eight of

which can be visualized as symmetries of the square. The

shear and the flip across the positive diagonal are in bold be-
cause we will use them later.

33. (Continuation) Given that the original slope is p/q, for each of the

nine symmetries, record the resulting slope after the transformation.

34. An active area of research is to describe all possible cutting se-

quences on a given surface. On the square torus, that question is:

“Which infinite sequences of As and Bs are cutting sequences corre-

sponding to a trajectory?” Let’s answer an easier question: How can

you tell that a given infinite sequence of As and Bs is not a cutting

sequence? You have computed many examples of cutting sequences

that do correspond to a line on the square grid or square torus. Now

make up an example of an infinite sequence of As and Bs that cannot

be a cutting sequence on the square grid or square torus, and justify

your answer.



9. We apply symmetries to trajectories 41

As described above, an active area of research is to describe

all possible cutting sequences on a given surface. John Smillie and

Corinna Ulcigrai (They did the math # 8) classified all cutting

sequences on the regular octagon surface, which is created similarly

to the square torus [54,55]. Because cutting sequences are infinite,

and most are not periodic, it turns out that there is no finite criterion

for deciding whether a given cutting sequence is valid: the algorithm

necessarily requires a possibly unbounded number of steps. We will

see in the cutting sequence characterization theorem (Problem 79)

that the same is true for cutting sequences on the square. The pic-

ture shows John and Corinna with the author in Bristol in 2012.

They did the math # 8. John Smillie & Corinna Ulcigrai



42 2. Trajectories, automorphisms, and continued fractions

35. In Problem 22, we showed that for outer billiards on the square,

points in a square move together. Let’s explore how they move.

(a)Using Figure 32, plot the complete orbit (meaning, until you get

back to where you started) of the R and of the winky face under the

counter-clockwise outer billiard map. One step is shown for the R.

Hint 1: To determine the orientation of the image square, you can

consider the image of each corner of the square. Hint 2: The Rs end

up on orange squares, and the winky faces on yellow squares.

(b)Prove that the square of the outer billiard map (this means that

you apply it twice) is a translation on each individual square.

Figure 32. A template for exploring how the outer billiard

map on the grey square transforms each colored square: im-
ages of square regions form necklaces around the billiard table.
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10. We dream of an action on cutting sequences

So far, to determine the effect of a surface automorphism on a tra-

jectory lying on that surface, we have drawn a picture of the original

trajectory and of the transformed trajectory (Problem 32). It’s a

great way to understand what’s going on, but it’s not super efficient.

A much more efficient way to write down the effect of the automor-

phism is to record how it affects the cutting sequence corresponding

to a trajectory. Then we can act on the cutting sequence – an op-

eration on symbols, not on pictures! – and get the cutting sequence

corresponding to the transformed trajectory.

They did the math # 9. Irene Pasquinelli

Irene Pasquinelli achieved this dream: in her master’s thesis, and

in a subsequent paper with the coauthors pictured in They did the

math # 9, she figured out how to determine the effect of an auto-

morphism using only symbolic operations on cutting sequences, for a

large class of surfaces [16,39]. We’ll do this for the square torus now.
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The picture shows Irene, Corinna Ulcigrai (# 8), and the author in

Bristol in 2014.

36. Given a trajectory τ on the square torus, we want to know what

happens to that trajectory under an automorphism of the surface.1

We’ll do this by comparing their cutting sequences: the cutting se-

quence c(τ) corresponding to the original trajectory τ , and the cutting

sequence c(τ ′) corresponding to the transformed trajectory τ ′. The

goal is to figure out how to get c(τ ′) directly from c(τ).

(a) Let τ2 be the trajectory of slope 2. Sketch a picture of τ2, and

find c(τ2).

(b) For each symmetry (1)–(5) below, apply it to τ2 to get a trans-

formed trajectory τ ′2, sketch τ ′2, and compute c(τ ′2).

(1) reflection across a horizontal line;

(2) reflection across a vertical line;

(3) reflection across the positive diagonal;

(4) reflection across the negative diagonal;

(5) rotation by 90◦ counter-clockwise.

(c)Explain how to obtain c(τ ′) from c(τ) for a general trajectory τ ,

for each of the five symmetries. Prove your answer correct.

DD

37. For each of the five symmetries in the previous question:

(a) Find the 2 × 2 matrix that performs this symmetry. For the

purpose of this question, assume that the square torus is centered at

the origin.

(b) Find the determinant of each matrix and give a geometric expla-

nation for why they all turn out to be ±1.

DD

38. A cutting sequence on the square torus can have blocks of multiple

As separated by single Bs, or blocks of multiple Bs separated by

single As, but not both. In other words, a sequence of the form

. . . AA . . . BB . . . cannot occur. Explain why.

ST
1The symbol τ is spelled tau and rhymes with “cow.”
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39. Theorem (billiards in an ellipse). If one segment of a billiard

trajectory doesn’t pass through the focal segment, then no segments

of that trajectory pass through the focal segment, and furthermore

all the segments of the trajectory are tangent to the same confocal

ellipse.

More precisely: Consider an ellipse E with foci F1, F2. If some

segment of a billiard trajectory does not intersect the focal segment

F1F2 of E, then no segment of this trajectory intersects F1F2, and all

segments are tangent to the same ellipse E′ with foci F1 and F2.

Let’s prove it! Steps of the proof below are color-coded in Figure 33.

Figure 33. Two confocal ellipses with a finite billiard path,

whose markings and colorings follow the steps of Problem 39.

(a) (blue) Consider the billiard trajectory A0A1A2 in the larger ellipse

E shown in the figure. Explain why ∠A0A1F1 = ∠A2A1F2.

(b) (green) Reflect F1 across A0A1 to create F ′
1, and reflect F2 across

A1A2 to create F
′
2. Explain why ∠A0A1F

′
1 = ∠A0A1F1 and ∠A2A1F

′
2 =

∠A2A1F2.

(c) Show that ∆F ′
1A1F2 and ∆F1A1F

′
2 are congruent.

(d) (red) Mark the intersection of F ′
1F2 with A0A1 as B, and the

intersection of F1F ′
2 with A1A2 as C. Show that the string length

|F1B|+ |BF2| is the same as the string length |F1C|+ |CF2|.
(e)Prove the theorem as stated above.
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DD

40. Find the continued fraction expansions of 3/2, 5/3, 8/5, and 13/8.

Describe any patterns you notice, and explain why they occur.

Hint: Also see Figure 34.

Figure 34. A suggestive picture to accompany Problem 40.
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11. The dream comes true

In these problems, we will determine the effect of the shearing au-

tomorphism from Problem 28 on a trajectory τ on the square torus,

and its corresponding cutting sequence c(τ). We’ll assume that the

trajectory is neither vertical nor horizontal, as such trajectories are

already easy to understand, and don’t work as nicely with our tools.

First, we will apply symmetry (recall Problem 6) to reduce our

work to just one set of trajectories:

DD

41. Show that, given a linear trajectory in any (non-horizontal, non-

vertical) direction on the square torus, we can apply rotations and

reflections so that it is going left to right with slope ≥ 1.

Since we have reduced to the case of slopes that are ≥ 1, we will

analyze the effect of the vertical shear
[

1 0
−1 1

]
, because these slopes

work nicely with this shear. Later (in Problems 84 and 88) we will

show that every shear can be reduced to this case.

Figure 35. Using an auxiliary edge to understand how the
vertical shear transforms a trajectory and its cutting sequence.

As an example, we’ll use the trajectory τ with slope 3/2 (Fig-

ure 35), with corresponding cutting sequence c(τ) = BAABA (left

picture). We shear it via
[

1 0
−1 1

]
, which transforms the square into

a parallelogram (middle picture), and then we reassemble the two

triangles back into a square torus, while respecting the edge identi-

fications (right picture), yielding the transformed trajectory τ ′. The

new cutting sequence is c(τ ′) = BAB.
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42. Notice that the horizontal edge A in the right picture corre-

sponds to dashed edge a in the left and middle pictures. We can use

this auxiliary edge, and its corresponding edge crossings, to form an

augmented cutting sequence BAaABA, which leads us to the derived

cutting sequence BAA:

BAABA −→ BAaABA −→ BaB −→ BAB.

Explain.2

They did the math # 10. Priyam Patel

In Problem 41, we showed that we could use symmetries of the

square torus surface to reduce our work. Priyam Patel (They did

the math # 10) studies such symmetries of surfaces, known as map-

ping class groups, and she also studies curves on surfaces, like the

trajectory τ in that problem [40]. The picture shows mathematicians

2The idea of auxiliary edges and augmented cutting sequences described here comes
from John Smillie and Corinna Ulcigrai’s paper Beyond Sturmian sequences: coding
linear trajectories in the regular octagon; see their § 1.2 and Figure 3.
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Brandis Whitfield, Noelle Sawyer (# 5), Michelle Chu, Marissa Lov-

ing, Aisha Mechery, Priyam, and Cassandra Monroe at a conference

on geometry, arithmetic, and groups in Austin in 2022.

43. Perform the geometric process described above for two different

trajectories τ of your choice with slope ≥ 1: Using a picture like

Figure 36, sketch a trajectory τ , sketch its image as a parallelogram

after shearing by
[

1 0
−1 1

]
, and then sketch the reassembled square with

the new trajectory τ ′. For each, record c(τ) and c(τ ′). Try to find the

pattern: a rule to get c(τ ′) from c(τ). Then prove your conjecture.

Hint : Apply the “edge marks” technique from Problem 13 on the

parallelogram edges to make accurate pictures.

Figure 36. A template for shearing, cutting, and reassem-
bling the square torus, waiting to transform your trajectories.

44. Find the continued fraction expansion of
√
2− 1. Then solve the

equation x = 1
2+x and explain how these are related.

45. How many billiard paths of period 10 are there on the square

billiard table? Of period 12? Construct an accurate sketch of each of

them. Does every even number have a corresponding periodic billiard

path?
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46. We have identified the top and bottom edges, and the left and

right edges, of a square to obtain a surface: the square torus. If we

identify opposite parallel edges of a parallelogram, what surface do

we get?
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12. We consolidate our gains

We are about to formulate a grand unifying theory relating a trajec-

tory on the square torus, its corresponding cutting sequence, and the

continued fraction expansion of its slope. We need these two results

(refer to Problem 32):

47. Show that if we apply the flip [ 0 1
1 0 ] to the square torus:

(a)The effect on the slope of a trajectory is to take its reciprocal.

(b)The induced effect on the cutting sequence corresponding to a

trajectory is to switch As and Bs.

48. Show that if we apply the shear
[

1 0
−1 1

]
to the square torus:

(a)The effect on the slope of a trajectory is to decrease it by 1.

(b)The induced effect on the cutting sequence corresponding to a

trajectory whose slope is greater than 1 is to remove one A between

each pair of Bs. In other words, as you go along the cutting sequence,

when you see a B, find the next B, and then between those two Bs,

remove exactly one A – and do this for all of the Bs (see Figure 37).

Figure 37. An example of removing one A between each pair

of Bs for part of an infinite cutting sequence.

Let’s nail down some proofs of these results, which we have pre-

viously conjectured:

49. Show that a trajectory with slope p/q (in lowest terms) on the

square billiard table has period 2(p+ q).

50. Show that the continued fraction expansion of a number termi-

nates (stops) if and only if the number is rational.
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We will now begin our study of the multitude of interesting sur-

faces other than the square torus. Here we go:

51. If we identify opposite parallel edges of a hexagon, what surface

do we get? Let’s explore this question:

(a) Figure 38 shows one way to figure it out: a hexagon surface is

cut-and-paste equivalent to a parallelogram surface. This means that

you can cut up the pieces of a hexagon surface and reassemble them,

respecting the edge identifications, into a parallelogram whose oppo-

site parallel edges are also identified. Explain, and check that the

steps in the picture respect the edge identifications.

Figure 38. Cutting, reassembling, and pasting a hexagon

surface into a parallelogram surface, while respecting the edge
identifications.

(b)An alternative approach is to sketch a “movie” of what it looks

like to glue identified edges together, assuming that the hexagon is

made out of stretchy material. Try this, too.

Figure 39. The “random” hexagons from Figure 38 tile the
plane by translation. Does this always work?
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52. Figure 38 shows a “random” hexagon with three pairs of parallel

edges. This hexagon tiles the plane, as shown in Figure 39.

(a)Does a hexagon with three pairs of parallel edges always tile the

plane? What if you require that, as in Figure 38, the parallel sides

are opposite each other?

(b)A polygon is convex if each of its angles is less than 180◦, or

equivalently if every line segment connecting two points of the polygon

lies completely within the polygon. Does a non-convex hexagon with

three pairs of parallel edges always tile the plane?

They did the math # 11. Maryam Mirzakhani

In Problem 51, we created a surface from an arbitrary hexagon

that has three pairs of opposite parallel sides. We could consider

the space of all possible hexagons, or the space of all of the surfaces

created by identifying the opposite parallel sides of such hexagons.

You might expect that the surface created from a regular hexagon,

or other special cases of hexagons, would appear in an identifiable

place in the space, and indeed the symmetries of the surfaces help

us to understand the symmetries of the space of surfaces. Maryam

Mirzakhani (They did the math # 11) studied spaces of surfaces,

and their symmetries [12,36]. She received the Fields Medal in 2014

and died in 2017.
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13. A grand unifying theory emerges

53. Starting with a trajectory on the square torus with positive slope,

apply the following algorithm:

(1) If the slope is ≥ 1, apply the shear
[

1 0
−1 1

]
.

(2) If the slope is between 0 and 1, apply the flip [ 0 1
1 0 ].

(3) If the slope is 0, stop.

An example is shown in Figure 40. (The second line is a continuation

of the first.)

Figure 40. Untwisting a trajectory until it is horizontal.

We can note down the steps we took: shear, flip, shear, shear.

We ended with a slope of 0. Work backwards, using this information

and your work in Problems 47 and 48, to determine the slope of the

initial trajectory. Keep track of each step.

54. (Continuation) Write down the continued fraction expansion for

the slope at each step.

55. (Continuation) Write down the cutting sequence for the trajectory

at each step.3

3To see this sort of thing in action on the double pentagon surface, see the video
“Cutting Sequences on the Double Pentagon, explained through dance” on Vimeo:
https://vimeo.com/47049144

https://vimeo.com/47049144
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56. (Continuation) Formulate a grand unifying theory relating a tra-

jectory on the square torus, its corresponding cutting sequence, and

the continued fraction expansion of its slope.

57. We can create a surface by identifying opposite parallel edges

of a single polygon, as we have done with the square and hexagon.

We’ll call such a surface a translation surface, since parallel edges are

translates of each other, and you can translate the polygon to identify

the edges. Parallel edges must be parallel and also the same length.

Opposite edges means that the polygon is on the left side of one of

the identified edges, and on the right side of the other.

In a similar way, we can create a surface from two polygons, or

from any number of polygons. Some examples are in Figure 41. Edges

with the same letter are identified, as with A and B on the square

torus. For the surfaces in the middle and on the right, two polygons

glued together form a single surface.

Figure 41. A menagerie of translation surfaces: our newest

friends.

(a)Review the part of Amie Wilkinson’s talk4 from 26 to 29 minutes,

which shows how to wrap the flat octagon surface (far left) into a

curvy surface embedded in 3-space. What is its genus – how many

holes does it have?

(b)Do your best to repeat her stretching methods for the double

pentagon surface (center) to make it into a curvy surface embedded

in 3-space.

(c)The octagon surface has 4 edges: A, B, C, and D. How many

edges do the other surfaces have?

4YouTube: “Dr. Amie Wilkinson - Public Opening of the Fields Symposium 2018,”
available at https://www.youtube.com/watch?v=zjccKzHIniw&t=1560s

https://www.youtube.com/watch?v=zjccKzHIniw&t=1560s
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Some people love translation surfaces, and other people really

love translation surfaces. Jayadev Athreya (They did the math #

12) has made many contributions to the field [5,6,30], but his most

unique contribution just might be having a double pentagon tattooed

on his forearm. The left picture shows the author with Jayadev in

Marseille in 2015.

They did the math # 12. Jayadev Athreya
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14. We expand from familiar friends to new
examples

58. In Problem 53, we gave an algorithm that gradually simplifies a

trajectory on the square torus with slope ≥ 1, by untwisting it step by

step, until it is a horizontal trajectory. Transform that algorithm into

an equivalent algorithm for the cutting sequence corresponding to a

trajectory. You should translate each of the four sentences (“Starting

with. . . ,” 1, 2, and 3) to act purely on sequences of As and Bs. Then

apply your algorithm to the cutting sequence ABAAB and check that

your result at each step is consistent with the pictures in Figure 42.

Figure 42. Untwisting a periodic trajectory via shears and

flips.

59. Create a translation surface (recall Problem 57) made from three

polygons, that no one else will think of. How many edges does your

surface have?

To count the faces of a translation surface, we count how many

polygons it’s made of. To count its edges, it might be easiest to count

the edge labels, remembering that pairs of opposite parallel edges are

identified. Finally, we need to know how to count its vertices, which

again requires understanding the edge identifications:

60. Vertex chasing. To explain how to count the vertices of a surface,

we will use the square torus in Figure 43. First, mark any vertex

(here, the top left). We want to see which other vertices are the same

as this one. The marked vertex is at the left end of edge A, so we also

mark the left end of the bottom edge A. We can see that the top and

bottom ends of edge B on the left are now both marked, so we mark

the top and bottom ends of edge B on the right, as well. Now all of
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the vertices are marked, so the square torus has just one vertex. (We

already knew that − how?)

Figure 43. Chasing a vertex on the square torus.

Determine the number of vertices for

(a) a hexagon with opposite parallel edges identified (Problem 51);

(b) each surface in Problem 57; and

(c) your surface created in Problem 59.

61. Let P be a convex quadrilateral that has a 4-periodic inner billiard

trajectory that reflects consecutively in all four sides. Prove that P

is cyclic: there is a circle containing all four of its vertices. Hint: A

quadrilateral is cyclic if and only if opposite angles sum to π.

They did the math # 13. Katherine Knox

Is the converse true – given a cyclic quadrilateral, must it have

a 4-periodic inner billiard trajectory that reflects consecutively in all

four sides? Katherine Knox (They did the math # 13), a 7th-grade

student participating in the Girls’ Angle program in Boston, showed
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that the answer is no. She proved that a convex quadrilateral has

a 4-periodic inner billiard trajectory that reflects consecutively in all

four sides if and only if the polygon is cyclic and the quadrilateral

contains its circumscribing circle’s center [31].

62. You will need: colored pencils or pens. Consider the

counter-clockwise outer billiard map on the triangular billiard table,

as shown in Figure 44.

Figure 44. A template for understanding co-moving regions
under the outer billiard map on the equilateral triangle.

(a)Explain why points on the thick blue lines are not allowed. Then

color the inverse images of the blue lines in red, the inverse images of

the red lines in green, the inverse images of the green lines in black,
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the inverse images of the black lines in purple, etc. (If you use these

specified colors, you will be able to check your work with others.)

(b) Identify some necklaces of iterated images of triangles, and color

each necklace a different color, as we did in Problem 35.

(c) I said to consider a triangular billiard triangle, but Figure 44

shows a very special case: an equilateral triangle. It turns out that

the outer billiards system is “invariant under affine transformations.”

This means that if you have a picture of an outer billiard orbit, and

then you apply a 2× 2 matrix transformation (such as
[

1 0
−1 1

]
) to the

whole system, the orbit is still valid. Thus, once we’ve understood

one triangle, we’ve understood them all. This is a special property of

outer billiards that does not hold for inner billiards. Explain.

This concludes our study of outer billiards. The tables we con-

sidered (circle, square, triangle) are quite simple, and the resulting

behavior is also simple. Figure 45 shows more exotic necklaces for

the outer billiard map on the regular pentagon.

Figure 45. Necklaces for the outer billiard map on the

central regular pentagon. I see pentagons, decagons,

and. . . fractals?!
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15. We figure out how to ignore trajectories
completely

63. Apply the geometric algorithm from Problems 53 and 58 to the

trajectory shown in Figure 46, to reduce it to slope 0. Note down the

steps you take (shears and flips). Then use this information to work

backwards from an ending slope of 0 to determine the slope of the

initial trajectory. Show all of your steps.

Figure 46. A mystery slope?! Continued fractions to the

rescue!

64. (Continuation) Explain how shears and flips on the square torus

are related to continued fraction expansions.

65. (Continuation) Find the cutting sequence corresponding to the

trajectory above. Apply your algorithm from Problem 58 to it, and

check that your results at each step are consistent with each step of

your work in Problem 63.

The following problem is, at long last, the payoff for all of our

work with continued fractions, shears, flips, and cutting sequences:

66. Find the cutting sequence corresponding to a trajectory on the

square torus whose slope has continued fraction expansion [0; 1, 2, 2].

Hint : you don’t need pictures; just use your algorithm and the grand

unifying theory (Problem 56).
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Problem 66 is an example of abstracting all the way away from

trajectories to working with only continued fractions and symbolic

cutting sequences. Curt McMullen (They did the math # 14) is a

master of plumbing the depths of abstraction in billiards and related

areas. He received the Fields Medal in 1998. He was also Maryam

Mirzakhani’s Ph.D. advisor (# 11). The picture shows Curt sailing

with the author in Boston in 2018.

They did the math # 14. Curtis McMullen
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Once we’ve made a surface, the Euler characteristic gives us a

way of easily determining what kind of surface we obtain, without

needing to come up with a clever trick like cutting up and reassem-

bling hexagons into parallelograms (as we did in Problem 51):

Given a surface S made by identifying edges of polygons, with V

vertices, E edges, and F faces, its Euler characteristic χ(S) is5

χ(S) = V − E + F.

Note that a “face” must be a simply connected polygon, without holes.

67. Find the Euler characteristic of each of the surfaces in Figure 47.

Comment on any patterns you notice. Can you prove your conjec-

tures?

Figure 47. The square torus, the cube, the tetrahedron, the
hexagon, and the double pentagon.

68. (Continuation) One of the main goals of the field of topology is

to classify surfaces by their genus, which, informally speaking, is the

number of “holes” they have. The surfaces in Figure 48 have genus

1, 2, and 3, respectively.

5Euler is pronounced “oiler.” χ is spelled chi and is pronounced “kye.”
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Figure 48. Surfaces with genus 1, 2, and 3, respectively.

We can use the Euler characteristic to determine the genus of a

surface: A surface S with genus g has Euler characteristic χ(S) = 2− 2g.

Use this to compute the genus of each of your surfaces from the pre-

vious problem, and check that your answers agree with reality.

69. (Challenge) Prove the formula χ(S) = 2− 2g. One way is to

proceed by induction: First, show that χ(S) = 2 for the tetrahedron

or some other simplest surface of your choice (base case). Then, show

that subdividing by adding a vertex, edge or face maintains the same

Euler characteristic. Finally, show that adding a hole decreases the

Euler characteristic by 2. (Other methods are also possible.)
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16. Hands-on activities for Chapter 2

As Chapter 2 comes to a close, we will bring the flat torus to life in

three (!) dimensions.

One way to make a model of a torus from a piece of paper is as

follows: Tape the left side to the right side, creating a tube. Then

wrap it around to attach the bottom edge to the top edge. To do

this, you’ll have to flatten the tube. The resulting object looks like a

wide bracelet or a paper wallet. It is not very satisfying; the volume

inside the torus is zero.

They did the math # 15. Alba Málaga Sabogal

Many people believe that the above description is the only way

to create a torus that is flat everywhere – that is, it has 2π of angle

around every point – out of a piece of paper. But it turns out that we

can do better! Along with Pierre Arnoux (# 32) and Samuel Lelièvre

(# 30), Alba Málaga Sabogal (They did the math # 15) created

the diplotorus: a flat torus that encloses a positive volume [3] (Figure

49). The picture shows Pierre, Alba and Samuel in Marseille in 2023.
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Figure 49. A flat torus, with 2π of angle around every point,
enclosing a positive volume. Can you believe it? It’s magical!

The idea has been around for a while, and the path it took to get

to Pierre, Alba and Samuel was a long and winding road:

• Ulrich Brehm explained how to construct such an object

during a talk at Oberwolfach in 1978.

• Then in 1984, Geoffrey Shephard gave another talk about it

at Oberwolfach, and brought a model.

• Guy Valette was in the audience for that talk, and made a

model of his own when he got home.

• Guy told Robert Ferréol about it, and Robert put it on his

web site, where Henry Segerman saw it.

• Henry made a 3D-printed version [49], which Pierre, Samuel,

Alba, and the author saw at ICERM in 2019. Glen Whitney

also brought a paper model of such a torus to ICERM.

• Finally, the idea has made it to you!

70. You will need: scissors, perseverance. The picture at the

end of this chapter shows a diplotorus layout, which you can print

(two-sided!) from the book web page. Cut it out, and then crease

it along the indicated lines: the dashed lines should be mountain

folds, and the solid lines valley folds. (Hint : If you spend a long

time making very strong creases on all of the lines, putting the model

together will be doable; if your creases are weak or inaccurate, it will

be almost impossible.) Then bring the edges with the same numbers
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and colors together, and attach the flaps via the red slits. The two

white disks should coincide at the same point, and the object should

look like Figure 49. Behold, a torus that encloses positive volume,

and is flat (2π of angle around each point) everywhere!

71. Switch the mountain and valley folds, so that the other side of

the paper shows. Behold, a closed path on a flat torus (Figure 50)!

Figure 50. A closed path on a truly 3D, truly flat torus.

72. The diplotorus layout looks roughly like a parallelogram, and

when you fold it up, you bring the short edges together, and you

bring the long edges together. But you do not identify the numbered

edges directly across; there is a twist. Using Figure 51, show how to

cut and paste the diplotorus translation surface into a parallelogram

whose opposite parallel edges are identified. (There is more than one

correct answer; see Problem 153.)

The famous Four-Color Theorem tells us that if you want to color

a geographic map in the plane so that regions meeting along an edge

are always different colors, you only need at most four colors. It is

possible for four regions to all border each other – e.g. Luxembourg,

Belgium, France, Germany, as in Figure 52 – but not five.

73. For the torus, the number is seven: given any map on the torus,

you need at most seven colors. The coloring on the diplotorus layouts
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Figure 51. A tiny diplotorus layout, for making into a par-
allelogram.

Figure 52. Four countries, four colors needed.

gives an example of seven mutually adjacent regions.6 Looking at the

flat layout in Figure 51 or on the next page, check that the orange

region 1 touches regions 0, 2, 3, 4, 5, 6. Argue that the same is true for

each of the other colors.

6Thanks to Moira Chas for suggesting this line of inquiry to Samuel, who suggested
it to me.
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Figure 53. Print out a copy of this picture from the book
web site and cut it out. Make mountain folds on the dashed
lines, make valley folds on the solid lines, and make your best
effort to twist it around so that the white dots coincide. Fun

fact: once re-flattened, a diplotorus is completely portable!
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Figure 54. Printed on the back side of the diplotorus, this
page yields a periodic trajectory wrapping around the flat
torus. Fun fact: this picture has to be exactly the right size in
order to work, but its placement on the page is not important.

Can you see why? Periodicity for the win!
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Periodicity everywhere

A billiard table trajectory in the style of a Celtic knot

In Chapter 1, we met our main characters; in Chapter 2, we delved

deeply into the structure of periodic directions on the square billiard

table. We saw how the slopes of trajectories on the square billiard

table are connected to continued fractions, and to automorphisms of

the square torus surface. In so doing, we saw links between billiards,

number theory, and group theory.

71
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In Chapter 3, we will use the tools and insights we gained in our

study of the square, as we move further afield to many different types

of billiards. We will do billiards on triangular tables, and we will meet

yet another kind of billiards. For billiards on non-square tables, the

situation is often “the situation is analogous to the square, but not

quite as elegant.” For other types of billiards, the behavior is often

not at all like the square. Exciting!

Here are a few guiding questions you can ask yourself when you

meet a new situation in billiards, or in any dynamical system:

• Is a typical trajectory periodic or non-periodic?

• If I change my initial point a little bit, do things change a

lot, or do they stay basically the same?

• If I change my initial direction a little bit, do things change

a lot, or do they stay basically the same?

• Can I transform this problem into a situation that I already

understand, or into one that is easier to analyze?
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17. We meet tiling billiards

We have explored the simplest case of classical billiards – inner bil-

liards on the square – in detail, and understood it deeply. We have

explored outer billiards, and understood something about its behav-

ior. Now we will expand our view to a third type of billiards:

Tiling billiards. In this system, a trajectory refracts through a

tiling of the plane. The refraction rule is that when the trajectory hits

an edge of the tiling, it passes through in such a way that the angle

of incidence is equal to the angle of reflection, and the trajectory has

been reflected across the edge (Figure 55).

Figure 55. The tiling billiards map: refraction across an edge

of a tiling.

74. Sketch some trajectories for the tiling in Figure 56. What kinds

of behaviors can you find? Prove that you have found them all.1

Figure 56. A square grid, for tiling billiards trajectories.

1For a beautifully artistic dynamic rendering of tiling billiards, and a preview of
# 38, see the video “Refraction Tilings” by Ofir David on YouTube: https://www.
youtube.com/watch?v=t1r1cO1V35I.

https://www.youtube.com/watch?v=t1r1cO1V35I
https://www.youtube.com/watch?v=t1r1cO1V35I
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Tiling billiards is motivated by the existence of metamaterials,

solids that have a negative index of refraction. Typical materials

such as water and glass have a positive index of refraction; you have

likely worked with these in physics, with Snell’s Law. The idea here is

to create a two-colorable tiling out of materials with opposite indices

of refraction, and see what happens as a laser beam refracts around

it. The first published results about tiling billiards came from the

work of three undergraduate students, along with the author: Elijah

Fromm, Sumun Iyer, and Paul Baird-Smith (They did the math

# 16), shown with the author at their poster session in 2016 [7].

They did the math # 16. Elijah Fromm, Sumun Iyer, and
Paul Baird-Smith

Walking around a vertex. We can determine the angle around a

vertex by “walking around” it, as shown in Figure 57 for a hexagon

surface. The left picture shows that the angle around the black vertex

is 3 · 2π
3 , and the right picture shows the same for the white vertex.

To do this, first choose a vertex (say, the top-left vertex of the

hexagon, between edges A and B, marked as black) and walk counter-

clockwise around the vertex. In our example, we go from the top end

of edge B to the left end of edge A. See that we “come out” on

the identified edge A at the bottom of the hexagon, and keep going

counter-clockwise: we go from the left end of the bottom edge A to

the bottom end of the left edge C. We keep going counter-clockwise
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Figure 57. Walking around the black and white vertices.

from the bottom of the right edge C to the top end of the right edge

B. We find the identified point on the top end of left edge B, and see

that this is where we started! So the angle around the black vertex

is 3 · 2π/3 = 2π. By the same method, or by symmetry, we can see

that the angle around the white vertex is also 2π.

Since the black and white vertices each have 2π of angle around

them, all the corners of a hexagon surface come together in a flat

plane, as we have already seen in Problem 51 and Figure 39.

75. For each of the surfaces in Figure 58, count its vertices, and then

determine the angle around each vertex.

Figure 58. Our friendly menagerie of translation surfaces,

coming back around for vertex counting and angle measuring.

76. As mentioned earlier, a surface is called flat if it looks like the

flat plane everywhere, meaning that there is 2π of angle around every

point, except possibly at finitely many cone points (also known as

singularities), where the angle around each cone point is a multiple

of 2π. For example, the regular octagon surface is flat everywhere

except at its single cone point, whose angle is 6π. Prove that every

translation surface (Problem 57) is flat.
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77. (Challenge) Is the converse true? In other words, is it true that

every flat surface can be represented by a collection of polygons, iden-

tified along opposite parallel edges? Prove it or find a counterexample.

78. The Fagnano trajectory. You have constructed several periodic

billiard paths in the square billiard table; other polygons also have

periodic paths. A classical theorem says that the Fagnano trajectory

connecting the feet of the three altitudes of an acute triangle is a 3-

periodic billiard trajectory (Figure 59). We will prove this by showing

that angles ARP and CRQ are equal; the argument is the same for

the other bounces.

(a)Opposite angles of a quadrilateral add up to π if and only if the

quadrilateral is cyclic. Use this result to show that quadrilaterals

APOR and CROQ are cyclic, as the diagram suggests.

(b)Another classic theorem of geometry says that two angles sup-

porting the same circular arc are equal. Use this to show that ∡PAO =

∡PRO, and ∡ORQ = ∡OCQ.

(c)Use triangles BAQ and BCP to show that ∡PAO = ∡OCQ.

(d) Show that ∡ARP = ∡CRQ, as desired.

Figure 59. The Fagnano trajectory, with circles identifying

two cyclic quadrilaterals.
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An active area of research is to characterize all possible cutting

sequences on a given surface. Now we can do this for the square torus.

Theorem (cutting sequence characterization). Cutting sequences

on the square torus are infinite sequences of As and Bs that do not

fail under the following algorithm:

(1) If there are multiple Bs separated by single As, switch As

and Bs.

(2) If there are multiple As separated by single Bs, remove an

A between each pair of Bs.

(3) If the sequence has AA somewhere and BB somewhere else,

stop; it fails to be a valid cutting sequence.

79. Earlier in the course, you probably conjectured that a cutting

sequence could only have two consecutive numbers of As, such as 2

and 3, between each pair of Bs, e.g., BABAAA is not allowed. Use

the theorem to prove this conjecture true.
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18. Earlier, we unfolded; now, we fold

80. In Problem 74, we saw that for tiling billiards on the square grid,

there are only two types of trajectories: those that go to the opposite

edge and zig-zag, and those that go to the adjacent edge and make

a 4-periodic path. How many types of trajectories are there on the

equilateral triangle grid (Figure 60)?

Figure 60. An equilateral triangle grid, for tiling billiards.

In billiards on the square, we unfolded a billiard trajectory into a line

on the square grid, and into a linear trajectory on the square torus. In

an analogous way, folding is a powerful technique for understanding

tiling billiards trajectories:

81. Consider a tiling billiards trajectory that crosses an edge E of the

tiling. Show that, if you fold the tiling along edge E, the two pieces

of trajectory that intersect edge E lie on top of each other.

82. Recall the cutting sequence characterization theorem (Problem

79) for trajectories on the square torus.

(a)The vexing part of this characterization is that it doesn’t have

a step saying, “Stop! Congratulations; you have a valid cutting se-

quence.” It only says, “Keep going; your cutting sequence hasn’t

proven to be invalid yet.” But it turns out that it’s the best we
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can do. Explain why this algorithm does stop for a periodic cutting

sequence.

I left out one technical point of the theorem: It actually charac-

terizes the closure of the space of all cutting sequences. Valid cutting

sequences are in the interior of the space, and cutting sequences such

as . . . AAAAABAAAAA . . . are on the boundary of the space.

(b)Explain why the above cutting sequence does not fail in the al-

gorithm, and also explain why it is nonetheless not a valid cutting

sequence on the square torus.

(c)Another cutting sequence on the boundary is . . . BBBABBB . . ..

Find yet another example of a cutting sequence on the boundary of

the space of cutting sequences.

They did the math # 17. Alex Wright

The space of cutting sequences is a rather abstract notion, like

the space of hexagon surfaces that we discussed in § 12. Typically,

the first examples we would think of are on the interior of such a

space, and degenerate cases are on the boundary of the space. Alex

Wright (They did the math # 17) has studied spaces of translation
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surfaces, and their orbit closures [63]. This picture shows Rodrigo

Treviño, the author, and Alex in the Frankfurt airport in 2014.

83. Consider again the 3-periodic Fagnano trajectory from Problem

78. Figure 61 shows a piece of a trajectory that is parallel to the one

in the construction and nearby. Continue the new trajectory until it

closes up. What is its period?

Figure 61. The Fagnano trajectory, and its parallel friend.

Notice that as you follow the dashed trajectory around, initially

it says “the solid trajectory is on my right!” and then after a bounce,

“the solid trajectory is on my left!” and so on, switching sides at

every bounce.

84. In Chapter 2, our strategy for “untwisting” a periodic trajectory

on the square torus (see Problem 53) was:

• If the slope is greater than 1, apply a vertical shear, and

• if the slope is less than 1, first flip so that the slope is greater

than 1, and then apply a vertical shear.

Alternatively, we could say:

• If the slope is greater than 1, apply a vertical shear, and

• if the slope is less than 1, apply a horizontal shear.

Explain.
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85. You will need: scissors, perseverance. The figure on the

next page shows a periodic tiling billiards trajectory on a triangle

tiling, which you can print from the book web site. Cut off the white

part and then fold along all the edges of the tiling, in such a way that

every part of the trajectory lies on a single line. The solid lines should

be “valley folds” and the dashed lines should be “mountain folds.”

Hint : Spend a long time making very strong creases on all of the

folds. If you have good strong creases everywhere, getting this thing

to fold flat will be doable; if your creases are weak or inaccurate, it

will be more difficult for you to make it happen.

Flat fold a little patch at first, and then gradually extend it to

the whole paper. The result should look like Figure 62. Save your

folded paper, as we will use it to prove things in subsequent problems,

e.g., Problem 90.

Figure 62. A fully folded tiling billiards trajectory on a tri-

angle tiling: the desired result of Problem 85.
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Figure 63. Print out a copy of this picture from the book
web site and cut it out. Make mountain folds on the dashed
lines, make valley folds on the solid lines, and make your best

effort to flat fold the tiling along every edge. It is a challenge,

but the payoff is huge in understanding!
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19. We meet the biggest open problem in
billiards

86. Lots of triangles have periodic trajectories.

(a)Explain why the Fagnano trajectory (Problem 78) gives a periodic

trajectory in every acute triangle, and only in acute triangles.

(b)Rich Schwartz (# 3) showed me the construction in Figure 64.

He calls it “shooting into the corner.” Fill in the details, and show

that it gives a periodic trajectory for every right triangle.

(c) Find an example of a periodic trajectory in an obtuse triangle.

(d) In fact, the Fagnano trajectory, the shooting into the corner tra-

jectory, and the period-4 solution to (c) are all variations on the exact

same idea. Explain.2

Figure 64. The “shooting into the corner” trajectory.

The biggest open problem in billiards is: does every triangular bil-

liard table have a periodic trajectory? The Fagnano trajectory shows

that every acute triangle has a periodic billiard trajectory, and the

“shooting into the corner” construction shows that every right trian-

gle has one.

Howard Masur (They did the math # 18) showed that every

polygon – and thus every triangle – whose angles are rational numbers

of degrees has a periodic path [34]. Rich Schwartz (# 3) used a

computer-aided proof to show that every triangle whose largest angle

is less than 100◦ has a periodic billiard trajectory [48], and in 2018

George Tokarsky, Jacob Garber, Boyan Marinov, and Kenneth Moore

2Thanks to Alan Bu for pointing this out.
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They did the math # 18. Howard Masur

extended that result to 112.3◦ [58]. The problem is open in general

for irrational-angled obtuse triangles with an angle larger than 112.3◦.

It seems that the methods of proof used for the 100◦ and 112.3◦

theorems do not work past about 112.5◦, so a new idea is needed to

move forward.

We have talked a little bit about the space of all possible trans-

lation surfaces of a given type. The space is divided into strata based

on:

• how many cone points the surface has, and

• how many extra multiples of 2π are around each cone point.

(Recall that in Problem 76, we proved that the angle at a cone point

of a translation surface is always a multiple of 2π.) We say that the

double pentagon surface is in the stratum H(2) because it has one

cone point, with two extra multiples of 2π around it: 6π total, so

2 · 2π extra. A surface with two cone points, each with angle 4π, is

in the stratum H(1, 1).3 The “H” stands for “holomorphic.”

87. For each of the remaining surfaces in Figure 65, identify which

stratum it belongs to. Then come up with an example of a surface in

H(1, 1).

3We read this aloud as “H one one.”
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Figure 65. A menagerie of translation surfaces.

Note that a vertex with 2π of angle around it is not really a

cone point; we can call it a marked point or a removable singularity.

Depending on how much you care about such points, you can include

0s in your stratum, or not. For example, while we could say that the

square torus is in H(0), we could alternatively note that it doesn’t

really have any cone points.

88. Here is our dream: to understand the effect of every automor-

phism of the square torus, on the cutting sequence corresponding to

a trajectory.

(a)Here is our progress so far (fill in the blanks):

(1) There are three types of automorphisms: rotations, reflections,

and shears. We understood the effects of rotations and reflections in

Problems .

(2) Using rotations and reflections, we reduced our work, now only

for shears, to the case of trajectories whose slope is greater than 1, in

Problem .

(3)We understood the effect of the matrix
[

1 0
−1 1

]
on a trajectory on

the square torus in Problems .

By the way, we used
[

1 0
−1 1

]
because it works nicely with trajec-

tories whose slope is greater than 1: it makes them simpler, a bit like

taking the derivative of a polynomial, while [ 1 0
1 1 ] makes them more

complicated, a bit like taking an integral.

(b) Find the analogous effects on slopes of trajectories, of the matrices

[ 1 0
1 1 ] , [

1 1
0 1 ] and

[
1 −1
0 1

]
.
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89. (Challenge) There is just one more step, to show that every shear

can be reduced to the ones we understand. Prove the following:

(4) Every 2× 2 matrix with nonnegative integer entries and determi-

nant 1 is a product of powers of the shears [ 1 1
0 1 ] and [ 1 0

1 1 ].

For example, given the matrix [ 3 7
2 5 ], we can decompose it as

[ 3 7
2 5 ] = [ 1 1

0 1 ] [
1 0
1 1 ]

2
[ 1 1
0 1 ]

2
.

Once we have proven this last step, we will be able to say that

we know the effect of every matrix with determinant 1 on slopes of

trajectories, and we could work out the induced effects of [ 1 0
1 1 ] , [

1 1
0 1 ]

and
[
1 −1
0 1

]
on cutting sequences just as we did for

[
1 0
−1 1

]
.

90. You will need: your folded triangles from Problem 85.

Consider a tiling by congruent triangles, created from a tiling by edge-

to-edge parallelograms by splitting the parallelograms along parallel

diagonals, such as the one that you folded up in Problem 85.

Figure 66. A fully folded tiling billiards trajectory, whose

form strongly suggests the presence of a circumscribing circle.
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(a)Given two adjacent triangles in the tiling, prove that, if you fold

along their shared edge, the circumcenters of the triangles coincide,

and thus the two triangles share the same circumscribing circle.

(b)Prove that this result extends globally: if you fold along all of

the edges of the tiling simultaneously, all the triangles, in the folded

state, are circumscribed in the same circle (see Figure 66).

(c)Use the above, and the result of Problem 81, to show that for

a given tiling billiards trajectory on a triangle tiling, in the folded

state, all the pieces of trajectory are contained in a single chord of

the circumscribing circle.
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20. Families of parallel trajectories

91. Figure 67 shows the Fagnano trajectory in the 40-60-80 triangle

(you can print a copy from the book web site). In Problem 83, we

showed that there are nearby parallel billiard trajectories of period 6.

(a) In the triangle in the lower right, sketch a period-6 trajectory that

is parallel to the given Fagnano trajectory.

(b)How far can you push the period-6 trajectory until it disappears?

Add to your picture a period-6 trajectory that is as far as you can

make it from the given Fagnano trajectory.

(c) Sketch one of your period-6 trajectories in the shaded triangle

that is in the lower left of the picture. Then draw the “unfolding” of

your trajectory. The unfolding of the Fagnano trajectory is given.

(d) Imagine the family of all possible period-6 trajectories that are

parallel to the Fagnano trajectory. Can you sketch all of their un-

foldings in the picture?

Figure 67. The Fagnano trajectory, and its unfolding.
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92. Consider a circle broken into a red arc and a blue arc, taking up

1/3 and 2/3 of the circle respectively, as in Figure 68. The game is

to start with any point on the circle, repeatedly rotate it by a 1/3

turn, and each time note down which part of the circle it lands in –

say, an A if it lands in the red arc and a B if it lands in the blue arc.

Try this for several different starting points, and rotate each of them

until you see a pattern.

Figure 68. A simple circle rotation.

93. One reason why people like cutting sequences on the square torus

is that they have very low complexity: The complexity function f(n)

on a sequence is the number of different “words” of length n in the

sequence. In other words, imagine that you have a “window” n letters

wide that you slide along the sequence, and you count how many

different words appear in the window.

(a)Confirm that the sequence ABABB below has complexity f(n) =

n+ 1 for n = 1, 2, 3, 4 and complexity f(n) = 5 for n ≥ 5.

. . . ABABBABABBABABBABABBABABBABABBABABB . . .

(b)Explain why a periodic cutting sequence on the square torus

with period p has complexity f(n) = n+ 1 for n < p and complexity

f(n) = p for n ≥ p.

(c) (Challenge) Aperiodic sequences on the square torus are called

Sturmian sequences. Show that Sturmian sequences have complexity

f(n) = n+ 1.

94. The defect of a cone point is 2π minus the cone angle at the cone

point. The total defect of a surface (or of any polyhedron made from
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identifying edges of polygons) is the sum of the defects of all of its

cone points. A theorem of Descartes says that the total defect of a

polyhedron is 2π χ(S). Check this formula for the cube, the square

torus, and the octagon surface, using your answers to Problem 67.

They did the math # 19. William Thurston

Bill Thurston (They did the math # 19) was hugely influential

in 20th-century mathematics, particularly in geometry. In addition

to his own work, he was the Ph.D. advisor, and the advisor’s advisor

(“academic grandfather”), of many mathematicians currently working

in billiards and related fields. Bill received the Fields Medal in 1982

and died in 2012. One of his later projects was working with Kelly

Delp to smooth out the angle defect in polyhedra [18]. The picture

shows Bill and Kelly at a workshop on mathematics and fashion at

Cornell in 2010.
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95. Figure 69 shows many trajectories of slope 1/2 on the square

torus. The collection of all such parallel trajectories is known as a

foliation of the surface, “foliation” meaning “leaves.” As usual, we

care about when a given trajectory crosses a horizontal or vertical

edge, and we record such crossings with an A or B, respectively. In

this picture, I’ve added a diagonal of the square, and colored it on

both sides: on the bottom to indicate whether an incoming trajectory

comes from a red or blue side, and on the top to indicate whether an

outgoing trajectory will hit a red or a blue side.

(a) Show how to use just the diagonal (copied larger below) to record

the edge crossings of the highlighted trajectory, by translating the

points as indicated.

(b)Explain why the dynamics of this system are identical to those of

the rotation in Problem 92.

Figure 69. We can record the path taken by a flow on the

square torus using its diagonal.

Above, we transformed a problem about trajectories on the square

torus into a problem about moving intervals around on a line segment.
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They did the math # 20. Jean-Christophe Yoccoz

This sort of system is called an interval exchange transformation.

In joint work with Pierre Arnoux (# 32), Jean-Christophe Yoccoz

(They did the math # 20) came up with the Arnoux-Yoccoz in-

terval exchange transformation, which has interesting properties and

led to much further research [4]. Jean-Christophe received the Fields

Medal in 1994 and died in 2016. The picture shows Jean-Christophe

with the author in 2014 at Oberwolfach.
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21. Interval exchange transformations

96. Figure 70 shows two different tilings of the plane by isosceles right

triangles. Consider tiling billiards on each of them.

(a) For each tiling, consider: are there periodic trajectories on the

tiling? If so, explain how to construct one and sketch it; if not, prove

that periodic trajectories cannot occur.

(b)An escaping trajectory eventually leaves a disk of any finite ra-

dius. Are there escaping trajectories on either tiling? If so, explain

how to construct one and sketch it; if not, prove that escaping tra-

jectories cannot occur.

Figure 70. Two tilings by isosceles right triangles.

97. The construction in Problem 95 showed how to represent a tra-

jectory on a surface via the motion of a point on an interval exchange

transformation (IET). The idea is that you chop up an interval into

subintervals, rearrange them, and glue them back together. Then you

chop up and rearrange them in the same way – and repeat.

Visually, choose a starting point on the bottom line of the diagram

(e.g., line (2) of Figure 71). To apply the transformation, flow up to

the top line. Note which subinterval (say, C) your point ends up in.

Take that subinterval C, with your point stuck in it like a nail in

a board, and shift it down to the location of C on the bottom line.
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Look at where your point ends up. That’s the image point! Then

repeat, as many times as you like. An example of the full orbit of one

point is shown in line (2) of Figure 71.

Figure 71. The six ways of rearranging three intervals.

(a)We said in Problem 95 that the dynamics of the IET explored

in that problem are identical to those of the rotation in Problem 92.

Explain why every 2-interval IET is equivalent to a rotation. Is this

still the case when the interval lengths are irrational?

(b) Figure 71 shows the six possible ways of rearranging three inter-

vals. (1) is the identity, and (2) and (3) are the identity on part of

the interval and 2-IETs (rotations) on the rest of the interval. Of

the remaining three, two of these are also rotations, leaving just one

irreducible 3-IET. Which one?
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98. For the 3-IET that you identified in the previous problem:

(a)Choose a point, mark all the places it goes (its orbit), and find

the period of its orbit. Does the orbit of every point have the same

period?

(b)The interval lengths for the IETs above are |A| = 1/2, |B| = 1/6,

|C| = 1/3. Show that the orbit of every point is periodic.

Just about everything I know about interval exchange transfor-

mations, I learned from Vincent Delecroix (They did the math #

21). With the group pictured in # 16, we had figured out that tiling

billiards on triangle tilings are equivalent to orbits on certain IETs

– but I knew very little about IETs. At a conference in Marseille

in 2017, stretching into the early hours of the morning, Vincent ex-

plained to me some essential tools for working with IETs, such as

Rauzy diagrams (see § 38). This illustrates a key principle, which

is that many of the ideas in mathematics are passed down by oral

tradition, one on one, people explaining things to each other and tak-

ing notes. In addition to educating colleagues and writing research

papers, Vincent writes and maintains software related to exploring

translation surfaces, IETs, and other aspects of dynamical systems

[17]. The picture shows Vincent giving a talk in Warwick in 2017.

They did the math # 21. Vincent Delecroix
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99. Each picture in Figure 72 shows a trajectory on the square torus

surface, and a parallel trajectory that is slightly shifted, or “per-

turbed,” from the original. Let’s consider them to be in the same

“family.”

(a) For each picture, draw another trajectory that is slightly per-

turbed from the given ones, and is also in the same family.

(b) If you perturb a trajectory enough, it will eventually hit a vertex.

A “singular trajectory” that hits a vertex on both ends is called a sad-

dle connection, and forms the boundary of the family of trajectories.

Draw in these boundaries for each of the pictures.

(c)The union of such a family of periodic trajectories is called a

cylinder. Can you guess why this name was chosen?

Figure 72. Periodic trajectories on the square torus (solid),
and their perturbed friends (dotted).

100. You will need: scissors, tape. We saw that the octagon

and double pentagon surfaces each have just one cone point, with 6π

of angle around it. What does this even mean? What does it look

like? If your birthday is in the first half of the year, use the picture

in Figure 74; if it is in the second half of the year, use the picture

in Figure 75 – or do both! Print the picture from the book web site,

and follow the instructions given in the figure caption. Then think

about what it means to have 6π of angle around a vertex. Bring your

folded-up, taped figure to class!

The construction in Figure 75 comes from Florent Tallerie [32].

This is a small piece of his layout for a genus-2 flat surface, the part

at the bottom of the picture in Figure 73.
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Figure 73. Florent Tallerie’s construction of a flat surface

of genus 2. The diplotorus layout in Problem 70 solves the
problem of creating a flat surface of genus 1, made out of paper

and enclosing a positive volume; this construction solves the

same problem for genus 2. Problem 94 tells us that the total
angle defect is 4π for a genus-2 surface, hence the cone point.
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Figure 74. Print out a copy of this picture from the book

web site and cut it out. Tear along the dashed lines – tear,

don’t cut, so that you can remember what is what! Then tape
the pieces together along edges with the same color, using the

pictures of Spinnaker the cat to remember what is glued to

what, and keeping the arrows pointing in the same direction
to keep a consistent orientation. Position your tape as close
as possible to the vertex, ideally touching the white point. At

the end, you should have a “spiral staircase” with 6π of angle
around the white point. Can you bring the last two edges

together? Imagine circling the white point by walking on your
taped-up paper, and convince yourself that you would make

three circles around the point.
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Figure 75. Print out a copy of this picture from the book

web site and cut it out. Fold along the indicated edges: dashed

lines are “mountain folds” and solid lines are “valley folds.”
Tape the same-color edges together, using the cats to match

identified edges (Jib the cat wishes to remind you that a cat

is made from one front half of a cat and one back half of a
cat). Position your tape as close as possible to the vertex,
ideally touching the white point. Notice that the angle at the

white point is 6π! Convince yourself that if you tried to draw
a “circle” around the white point, it would take much longer

than usual to get back to where you started.
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22. We do some computer experiments

101. Let’s experiment a bit with tiling billiards trajectories on tri-

angle tilings. Go to the web site https://awstlaur.github.io/negsnel/,

coded by Pat Hooper and hosted by Alexander St. Laurent.

Figure 76. Tiling billiards trajectories, now with live action.

(a)Move the starting point (green) and the direction (red) and see

what sort of things you can get. You’ll get things like Figure 76.

(b)Click on “Help” at the top and learn how to control the applet

with keys.

(c)Click “New” and create a new triangle tiling determined by angles

of your choice. Find a really big periodic trajectory. Find a really

interesting trajectory. Take a screenshot.

(d)Click on “New” and select some other kind of tiling. Find a really

interesting trajectory. Write down the parameters you used. Take a

screenshot.

(e)Use the w, a, s, d keys to slightly nudge the direction. Is your

trajectory stable or unstable under small perturbations in the direc-

tion?

(f)Notice that you can click Edit > Set iterations. Once you get

something interesting, increase to more iterations and see what hap-

pens when you allow more bounces. (Turn down the iterations when

perturbing the trajectory.)

It turns out that programming can be really helpful for figuring

out what is going on in a dynamical system. If you have a program

that models the system you want to study, you can experiment and

https://awstlaur.github.io/negsnel/
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get a sense of what is going on. For example, in Problem 101, you

probably noticed that the dynamics on some tilings are boring, while

the dynamics on other tilings are rich and fascinating. You’d want

to spend your time on the latter. Experimentation also leads to con-

jectures, which you might be able to prove, or to counterexamples,

which can stop you from trying to prove something false.

Pat Hooper (They did the math # 22) has written a lot of

code for studying billiards and translation surfaces. In collaboration

with Vincent Delecroix (# 21) and Julian Rüth, Pat has developed a

python package called sage-flatsurf that allows people to experiment,

compute, and understand far more about flat surfaces than they could

with paper, pencil, and brain alone [17]. The picture shows the author

with Pat in Stony Brook in 2015.

They did the math # 22. W. Patrick Hooper

102. Recall that the union of a family of parallel periodic trajectories

is called a cylinder, and cylinders are separated by saddle connections

between cone points (Problem 99). For a translation surface made

from polygons, the set of cylinder directions and the set of saddle

connection directions coincide. Both cylinders and saddle connections

can cross many polygons.

(a)Explain why slopes 2/3 and 5/7 are cylinder directions for the

square torus. (Note that the “corner” of the square torus is not a
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true cone point; we call it a removable singularity, as we discussed in

Problem 87.)

(b)What are all of the cylinder directions for the square torus?

103. So far, we have been studying IETs where you chop up an

interval and then rearrange the pieces. Now, suppose that you chop

up an interval, flip each piece, and then rearrange the pieces. The

IET in Figure 77 shows the interval [0, 1] chopped into three pieces

(colored red, green and blue).

We flip each piece; the picture represents this by drawing each

interval as a triangle, so that you can tell which part of it is which.

Then we reassemble the pieces. An IET where every interval is flipped

is called a “fully flipped” (or orientation-reversing) IET. The picture

shows some examples of applying the IET map.

Figure 77. An orientation-reversing 3-IET.

In this picture, we are thinking of 0 and 1 as being equivalent,

just like 0 = 2π on a circle, so that the blue interval is not truly

chopped in two, but is just overlapping the break point. So really,

this is a circle exchange transformation (CET).

(a) For the black point in Figure 77, its first two images are shown.

Draw its full orbit. Hint : it has period 6.

(b)Notice that some of the intervals overlap their images – with a

flip, of course. These regions are shaded in grey. The orbit of one such

point is shown in pink. Prove that, for each point in an overlapping

region, the period of its orbit is always 2 (except that the midpoint

is a fixed point).

(c)Argue that (1) the orbit of every point on this IET is periodic,

with period 1, 2, 3, or 6, and (2) if you move your starting point a

little bit, the behavior of the point does not change, and (3) these

facts do not depend on whether the interval lengths are rational or

irrational. These are three reasons to love fully flipped CETs!
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Here is another reason to love fully flipped CETs: it turns out

that the dynamics of tiling billiards on triangle tilings are equivalent

to the dynamics of a fully flipped CET like the one shown in Figure

77! Elijah Fromm, Sumun Iyer, Paul Baird-Smith, and the author

discovered this surprising equivalence [7]. The periodic nature of fully

flipped CETs that you explained in Problem 103(c) gives rise to the

abundance of periodic behavior that you noticed in Problem 101(c).

In Problem 90 (a)–(b), you proved that when you fold along

every edge of a triangle tiling, all of the triangles in this folded state

are inscribed in the same circle; this is the circle for the CET. Every

time you fold along an edge of the triangle tiling, you are essentially

performing a reflection, which gives the CET its fully flipped property.

You proved in Problem 90 (c) that in the folded state, all of the pieces

of trajectory are contained in a single chord of the circumscribing

circle. So as the trajectory moves across the tiling, in the folded state

the pieces of trajectory go back and forth across the chord, and the

triangles dance around the circle according to a CET.

104. The details of the CET described above are tedious to compute,

and are beyond the scope of this text. Still, explain why it is plausible

that tiling billiards on a triangle tiling is equivalent to the motion of

a point on a CET.

They did the math # 23. Pascal Hubert

This surprising connection linked the new field of tiling billiards

to the existing field of interval exchange transformations, and to the
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substantial body of knowledge about the dynamics of IETs. After

this, more people got interested in tiling billiards! Two of the people

who got interested were Olga Paris-Romaskevich (# 38) and Pascal

Hubert (They did the math # 23), who together proved many

new results about tiling billiards, including proving interesting con-

jectures, extending the triangle ideas to quadrilaterals, and applying

substantial previous work on IETs by Arnaldo Nogueira [29]. The

picture shows Pascal and Nicolas Bédaride in Marseille in 2023.

Many people have studied IETs for many decades, as a one-

dimensional system without very many pictures. Tiling billiards gives

new two-dimensional pictures that represent IETs, which is exciting.

105. Here is a new game: make some number of 1× 1 squares going

vertically (in Figure 78, six). Then make a big square that goes across

all of them, and make some number of those going horizontally (here,

one). Then make a big square that goes across all of them, and make

some number of those going vertically (here, three), and so on. Here

we end up with a 7 × 27 rectangle. Show how to do this to end up

with a rectangle whose dimensions are the day and month of your

birth. Does every birthday work?

Figure 78. Using squares to make a 7× 27 rectangle.

We’ll extend the ideas from the problem above in Chapter 4.
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106. Stability under perturbation, part I

Consider a billiard trajectory in the square billiard table.

(a) If you keep the direction the same, and change your starting point

a little, what happens? Does the trajectory change a lot, or is it

essentially the same?

(b)How about the reverse – if you keep the starting point the same,

and change your direction a little bit, what happens?

(c) If you keep the starting point and direction the same, and perturb

the table a little bit so that it is not quite a square, what happens to

the trajectory? Consider the case of a rectangle, and also the case of

a non-rectangle.

Stay tuned for Stability under perturbation, part II in Chapter 4.
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23. Hands-on activities for Chapter 3

Celtic knots are a traditional form of decorative art associated with

Ireland. They come in many different shapes, some of which are

related to. . . periodic billiards on the square!

Figure 79. Three examples of Celtic knots.

107. All Celtic knots are alternating, meaning that if you follow a

cord along its journey, it alternates over, under, over, under. . . as it

crosses other parts of the cord.

(a)Check that the knots in Figure 79 are alternating.

(b) Figure 80 shows how to transform a billiard trajectory into a

Celtic knot. Do so yourself for the three examples in the bottom

row. Hint: Draw in the “crossings” first, following the path around

to make it alternating, and then fill in the rest of the knot.

Figure 80. Periodic billiard paths → Celtic knots!
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108. You will need: rope. Optional: wooden board, hammer,

nails. With a rope, create a Celtic knot based on periodic billiard

trajectories. An example is in Figure 81.

Advice: Draw a picture of the desired knot, including the cross-

ings, to help you avoid errors. (Can you weave an alternating knot

without looking at a diagram of the proper crossings? I have tried

many times, but I have always made at least one mistake.) Creating

the knot is easiest to do if you have a solid frame, such as a board

with nails in it, to hold the cord in place. Mark the board with the

crossings, as shown on the right side of Figure 81, so that you will

know how to weave your knot as you go.

Figure 81. Weaving a Celtic knot based on a billiard trajec-
tory, out of a real piece of rope.





Chapter 4

Cylinders and
automorphisms

A long periodic trajectory on the regular pentagon that spends

more time in some areas than in others.

In this chapter we build up the full power of cylinders. Our goal is

to understand all of the periodic trajectories on our surfaces, by un-

derstanding how automorphisms act on surfaces and their cylinders,

as we did for the square. We will also meet an eclectic menagerie of

surfaces designed to do all sorts of interesting things.

109
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24. Twisted cylinders

109. Stability under perturbation, part II

Consider a trajectory on a square outer billiard table, as in Figures

11 and 32.

(a) If you change your starting point a little, what happens? Does

the trajectory change a lot, or it essentially the same?

(b) For inner billiards on the square billiard table, we chose a starting

point and a direction. Explain why in outer billiards, we don’t: the

starting point determines the trajectory.

Now consider a tiling billiards trajectory on a square grid, as in

Figure 56.

(c) If you change your starting point a little bit, what happens? Does

the trajectory change a lot, or it essentially the same?

(d) If you change your starting direction a little bit, what happens?

110. Let’s make sure your shearing skills are sharp. Local sheep,

beware!

(a) For each of the identified lattice points in Figure 82, draw its

image under the horizontal shear [ 1 1
0 1 ].

(b)Repeat for the vertical shear [ 1 0
1 1 ].

Figure 82. Practice your skills by shearing these points.
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111. In Problem 28, we sheared the square torus by applying the

matrix
[

1 0
−1 1

]
, which transformed it into a parallelogram, and then we

reassembled the pieces back into a square. This action amounted to a

twist of the torus surface. Figure 83 shows another way of shearing the

square torus (left), this time via the matrix [ 1 m
0 1 ], and reassembling

the pieces (right) in such a way that the reassembly respects the edge

identifications. The edge identifications are indicated with colors.

Explain what is going on.

Figure 83. A square torus twisted via
[
1 m
0 1

]
, where m = 4.

They did the math # 24. Barak Weiss

Barak Weiss (They did the math # 24) introduced me to the

idea of twisting a cylinder over and over to see what happens. As we

will see in Problem 132, sometimes something happens that is very

interesting indeed. The picture shows some mathematicians on a hike
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in the mountains above Grenoble in 2018: Barak, Fernando Al Assal,

Ben Dozier, and René Rühr, with the author.

112. For the square torus, in every cylinder direction there is only

one cylinder. For surfaces made from other polygons, there can be

multiple cylinders. The double pentagon surface has two cylinders

in each cylinder direction. Figure 84 shows cylinders on the double

pentagon surface in four directions.

Figure 84. Four different cylinder decompositions of the dou-
ble pentagon surface.

(a) For each set of cylinders in Figure 84, consider a trajectory on the

surface, in the cylinder direction. Write down the cutting sequence

for the trajectory in the light cylinder and for the trajectory in the

dark cylinder. Think about similarities and differences with our work

on the square torus.

(b)Construct a vertical cylinder decomposition of the surface.

(c)The two cylinder decompositions in the top line of the picture are

equivalent under a rotation. Is the vertical decomposition from (b)

equivalent to any of those shown?
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113. Consider the L-shaped surface made of three squares, with edge

identifications as shown on the left side of Figure 85. We shear it by

the matrix [ 1 2
0 1 ], as shown.

Show how to reassemble the sheared surface back into the L sur-

face. Make sure that your reassembly respects the edge identifica-

tions.

Figure 85. We came, we sheared, we reassembled.

Since we get the same surface back – and thus the sheared version

of the L-shaped surface differs from the original only by a cut-and-

paste equivalence – we say that [ 1 2
0 1 ] is an automorphism of the L-

shaped surface.
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25. Let’s get illuminated!

Figure 86 shows what happens when you put a candle in a room: the

light radiates out in every direction. Look closely at the bottom of

the picture: this room has a mirror on the wall, so the rays that hit

the wall bounce off, following the billiard reflection law.

Figure 86. Light from a candle radiates in all directions and

reflects off of a mirrored wall.

114. Suppose that you are in a room whose walls are all mirrored.

You wish to illuminate your entire room with a single candle.

(a)Explain why this problem is easy when the room is convex.

(b) Suppose your mirrored room is an L-shape made of three squares,

as shown on the left side of Figure 87, and suppose you place the

candle somewhere in the dark square. Does the candle illuminate the

whole room? Explain why or why not.

Figure 87. Two interesting examples of mirrored rooms.
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The illumination problem asks a generalization of the above: for

which shapes of mirrored room can you put a candle anywhere in

the room, and be sure that the light will reach every point? George

Tokarsky constructed an example of a polygonal roommade of squares

and isosceles right triangles to answer this question, shown on the

right side of Figure 87 [57]. The room contains two points A and B

that do not illuminate each other: a candle placed anywhere other

than points A and B illuminates every point in the room, while a

candle placed at A will illuminate every point except point B, and

vice versa.

Later, Samuel Lelièvre (# 30), Thierry Monteil, and Barak Weiss

(# 24) wrote a paper memorably titled “Everything is illuminated”

that, in conjunction with a paper by Barak’s student Amit Wolecki,

shows that all polygons whose angles are rational numbers of degrees

are basically like that: every point illuminates every other point,

except possibly for a finite collection of points that don’t illuminate

each other [33,62].

They did the math # 25. Alex Eskin

To prove their result, Samuel, Thierry and Barak used the “Magic

Wand Theorem,” the colloquial name for a collection of powerful

results from a paper of Alex Eskin (They did the math # 25),
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Maryam Mirzakhani (# 11), and Amir Mohammadi [22, 23]. In

2020, Alex received the Breakthrough Prize for his work on the Magic

Wand Theorem. The picture shows Alex (center) with his wife Anna

Smulkowska (left) and mathematician Ursula Hamenstädt (right) in

Chicago in 2017.

115. The pictures in Figure 88 show a surface made from a non-

regular hexagon.

(a)The first picture shows a foliation (Problem 95) by parallel trajec-

tories. Explain how any trajectory in this direction can be represented

by the orbit of a point on an IET.

(b)Using the second picture, draw a foliation in a different direction

of your choice. Draw in the diagonal that is closest to perpendicular

to your trajectories, and use it to sketch the corresponding IET.

(c) Show that the “top” and “bottom” segments on the diagonal cor-

responding to a given edge (e.g., edge A) always have the same length.

Figure 88. Transforming a surface flow into an IET.

Contextual note. In mathematics, we often care about the dimen-

sion in which we are working. For example, a torus is a 2D object,

and if we look at it as the surface of a bagel, it is a 2D surface em-

bedded in 3D space. The family of parallel trajectories in a given

direction on the hexagon surface of Figure 88 looks like a 2D system,

but we showed above that the behavior of each one can be reduced

to the orbit of a point on an IET, which is a 1D system.
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116. In Problem 113, we showed that the shear [ 1 2
0 1 ] is an auto-

morphism of the L-shaped surface made from three squares: You can

apply this automorphism, and then rearrange the resulting pieces by

translation, while respecting edge identifications, to get back the same

surface you started with.

What about 90◦ rotations? What about the simpler shear [ 1 1
0 1 ]?

Apply these transformations to the surface using the framework in

Figure 89, and determine whether the rotation and the shear are

automorphisms of the surface.

Figure 89. Are this rotation and this shear automorphisms

of the L?

117. Do the same for the 2× 1 rectangle in Figure 90.

The surfaces in Problems 116–117 are called square-tiled surfaces,

meaning that they are created by gluing together unit squares, edge to

edge. The group of 2×2 matrices with integer entries and determinant

1 is known as the “special (determinant 1) linear group of order 2 (2×2

matrices) with entries in Z (integers),” and is denoted by SL(2,Z).

Think back about your experiences shearing and reassembling

surfaces in Problems 111, 113, 116, and 117. Given a square-tiled

surface and a matrix in SL(2,Z), what do you think is the probabil-

ity that the matrix is an automorphism of the surface? Jane Wang

and Sunrose Shrestha (They did the math # 26) have studied the
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Figure 90. Are they automorphisms of the 2× 1 rectangle?

statistics of square-tiled surfaces: exploring what proportion of the

square-tiled surfaces in each stratum have various interesting prop-

erties [52, 53]. The picture shows billiards enthusiasts (front row)

Chandrika Sadanand (# 7), the author, Aaron Calderon, Jane; (back

row) Michael Wan, Solly Coles, Samuel Lelièvre (# 30), and Sunrose,

in Boston in 2017.

They did the math # 26. Jane Wang & Sunrose Shrestha
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ST

118. Counting periodic trajectories, part I

One way to count periodic billiard trajectories in the square is

to ask how many periodic trajectories it has with length less than

L. (Here by length we mean the distance along a trajectory in one

period, measured using a ruler or perhaps the Pythagorean Theorem.)

Of course, periodic trajectories occur in parallel families, which form

cylinders (Problem 99); we will count the number of such families.

(a)How long is the trajectory of slope 2? The trajectory of slope

3/4?

(b)Explain why the number of lattice points inside a disk of radius

L is approximately πL2, especially when L is large.

(c)Use the above to show that the number of periodic families of

length less than L is approximately πL2/8.
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26. The tree of periodic directions

119. Figure 91 shows a way of starting with simple vectors and gen-

erating more complicated vectors. Here is how we construct this tree

(called the Farey tree): start with the vector [ 11 ] in the lower left.

At each step, choose either to add the entries together to get a new

x-value (moving right), or to add the entries together to get a new

y-value (moving up). Fill in as many entries as you can.

Figure 91. The first five levels of the Farey tree.
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The picture shows the first five levels of an infinite binary tree. A

binary tree means that at each node of the tree, you have two choices

of where to go – in this case, right or up. I made each level smaller

than the previous one so that five levels would fit on the page.

120. (Continuation) Let’s explore this tree a bit.

(a) Find [ 12 ], [
3
2 ], [

3
5 ], and [ 85 ] in the tree. Comment on any patterns.

(b)What vectors appear in this tree? Does your birthday vector[
month
day

]
appear in the tree? If so, at what level?

(c) For an integer vector [ pq ], the continued fraction expansion of q/p

tells you how to move in the tree to reach [ pq ]. Explain.

121. We have seen that we can often partition a surface into cylinders.

The boundary of a cylinder is a saddle connection – a line segment

connecting two cone points with no cone points in its interior – and

there are no vertices inside a given cylinder. To construct the saddle

connections, draw a line in the cylinder direction through each ver-

tex of the surface until it hits another vertex. The line might pass

through many polygons before it reaches its ending vertex. These

lines cut the surface up into strips, and then you can follow the edge

identifications to see which strips are glued together to form cylin-

ders. Recall Problem 112, where we saw several examples of cylinder

decompositions for the double pentagon.

(a) For the surfaces in Figure 92, sketch the horizontal cylinder de-

composition, by shading each horizontal cylinder a different color, of

each of the surfaces below.

Figure 92. Surfaces desiring a horizontal cylinder decompo-
sition.

Notice that the regular decagon surface has two cylinders in one

cylinder direction, and three cylinders in another direction.
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(b)Using the same surfaces, sketch a cylinder decomposition for each

one in some non-horizontal direction, preferably not vertical.

We said that a saddle connection is a line segment connecting

two cone points, with no cone points in its interior. In the decagon

surface, some saddle connections connect a vertex to itself (black to

black or white to white), while others connect two different vertices

(black to white). An automorphism cannot map a same-vertex saddle

connection to a different-vertex saddle connection, or vice versa.

Speaking of cylinders and automorphisms, let’s meet a creature

that is legendary in these areas: the eierlegende Wollmilchsau1 (Fig-

ure 93). This surface is interesting because while it is clearly not the

square torus, it has some key properties in common with the square

torus. We’ll explore some of those now.

Figure 93. The legend: the eierlegende Wollmilchsau.

122. (a) Show that the surface has two horizontal cylinders and two

vertical cylinders, and in each case the cylinder’s width (in the cylin-

der direction) is 4 times its height (perpendicular to the cylinder

direction). We say that the cylinders have modulus 4. You can think

of the cylinder’s modulus as its “aspect ratio.”

We have previously shown that the square torus has three types

of automorphisms: rotations, reflections, and shears. The group con-

sisting of all of the automorphisms of a surface is called the Veech

group of the surface. If we think of the automorphisms in terms of

1“EYE-ur-LEEG-un-duh VOLE-milsh-sow”
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the 2 × 2 matrices that perform them, we can say that the Veech

group of the square torus is SL(2,Z).

(b) It turns out that the Veech group of the Eierlegende Wollmilchsau

is also SL(2,Z). To prove this, first recall that in Problem 89, you

proved that the matrices [ 1 1
0 1 ] and [ 1 0

1 1 ] generate SL(2,Z). Then

transform the surface by each of the two generators, and check that

you get the same surface back, as we practiced in Problems 113 and

116. Finally, use these results to prove the claim.

They did the math # 27. Gabriela Weitze-Schmithüsen

The eierlegende Wollmilchsau was discovered by Gabriela Weitze-

Schmithüsen (They did the math # 27) and Frank Herrlich in 2003

[25]. Gabi and Frank gave the surface its catchy name. It translates

from German as “egg-laying wool-milk-sow” – an animal that provides

eggs, wool, milk and meat, or in other words, everything a person
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could need. Similarly, this surface provides just about everything you

could ever ask for in a surface, including resembling an animal. The

picture shows Gabi looking at a banner of herself.

123. Figure 94 shows a 4-IET. An example of the image of one point

is shown.

(a) Find the orbit of this point for at least six more iterations. Is

its orbit periodic? If so, does the orbit of every point have the same

period as this one? (Hint: measure carefully! Don’t assume that

everything is periodic!)

Figure 94. Our first example of a 4-IET.

An IET cuts up an interval of points and reassembles them. So

we can think of an IET as a function that maps points between 0 and

1 to points between 0 and 1.

(b) Figure 95 shows the function corresponding to the above 4-IET.

Explain.

(c)Use the graph to find the orbit of the same point that you followed

in part (a). Note the helpful foliation by lines with slope −1!

124. Show that if the length of every subinterval of an IET is rational,

then the orbit of every point is periodic.

Interval exchanges are simple to define – just chop up an interval

and rearrange the pieces – and even IETs with a small number of

intervals can have interesting properties. We have shown that every

2-IET is equivalent to a rotation (Problem 97), and that IETs with ra-

tional subinterval lengths have only periodic behavior (Problem 124),

but outside of these cases, things can get very interesting indeed.

Jon Chaika (They did the math # 28) has studied many prop-

erties of interval exchange transformations, particularly their ergod-

icity [10]. A flow is ergodic if, roughly speaking, the amount of time

that a point spends in each region is proportional to the region’s size.
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Figure 95. The 4-IET of Figure 94, expressed as a graph.

They did the math # 28. Jon Chaika

For example, in the IET in Problem 123, if the flow is ergodic, then if

the interval B has length 1/10, a point should land in interval B, on

average, 1/10 of the time. The picture shows Evelyn Lamb and Jon,

mathematicians who are married to each other, in Moab in 2024.
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27. We finally meet Veech

125. You’ve built up rectangles from squares (Problem 105). You’ve

filled in the binary tree of relatively prime vectors (Problem 119).

Now let’s look at a third way to generate all of the relatively prime

vectors made of positive integers: shears!

(a) Start with (1, 1) as shown in Figure 96. Apply the horizontal

shear [ 1 1
0 1 ] to the red point to get one new point, (2, 1) – draw this

in orange. Also apply the vertical shear [ 1 0
1 1 ] to the red point, to get

(1, 2) – draw this in orange also.

(b)Now apply the horizontal shear [ 1 1
0 1 ] to the orange points, and

draw these new points in yellow. Do the same for the vertical shear

[ 1 0
1 1 ], applying it to all of the orange points to get new yellow points.

You should get four yellow points.

(c)Now apply both the horizontal and vertical shears to the yellow

points. Draw these eight new points in green.

(d)Repeat the above for all the green points. Draw the new points

in blue. Continue in purple. Mark all of the points you get.

Figure 96. Let us now, at long last, generate our relatively

prime vectors using shears.
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126. Making connections, again.

(a)Explain the connections between the three ways we have seen of

generating new points: adding squares (Problem 105), adding vectors

(Problem 119), and shearing the plane (Problem 125).

(b)Explain why every point we get in this way is primitive, meaning

that the greatest common divisor of its components is 1.

(c)We can call this the set of primitive vectors, or the set of visible

points: suppose that you are standing at the origin of an infinite

orchard, and there is a tree at every lattice point. Then the points

we generated above are the trees that you can see. Explain.

(d)Notice that to reach the point (5, 7) in your picture for Problem

125, you applied the transformations

(1, 1)
[ 1 0
1 1 ]−−−→ (1, 2)

[ 1 1
0 1 ]−−−→ (3, 2)

[ 1 1
0 1 ]−−−→ (5, 2)

[ 1 0
1 1 ]−−−→ (5, 7).

Explain how to use horizontal and vertical shears to implement

the continued fraction algorithm for 7/5. Done in reverse, this is Eu-

clid’s algorithm for finding the greatest common factor of two num-

bers: here, 5 and 7.

127. Counting periodic trajectories, part II

We can improve on our previous method of counting periodic trajec-

tories (Problem 118) by counting primitive vectors, as these are the

directions that give us different billiard trajectories.

Let P be the set of primitive vectors (Problems 125–126). For

each natural number k, let kP be the set of primitive vectors multi-

plied by k, i.e., vectors [a, b] where the greatest common divisor of a

and b is k.

(a)Draw the set 2P in black on your picture from Problem 125.

(b)Explain why the union of all of the sets P, 2P, 3P, . . . is every

lattice point in the first quadrant, and also show that the sets are

disjoint (they have no elements in common). In other words, the sets

form a partition of the first-quadrant lattice points.

(c)We wish to know the proportion of the integer vectors in the first

quadrant that are in P ; let’s call this proportion x. Show that the

proportion of such vectors that are in each set kP is x
k2 .
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(d) Justify the equation 1 = x

(
1

12
+

1

22
+

1

32
+ · · ·

)
.

The latter sum is famous; it is known as ζ(2), as it is the value

of the Riemann zeta function for exponent 2. It can be shown that

the value is π2

6 , so the proportion of primitive vectors is 6
π2 ≈ 61%.2

For the set of birthday vectors of the form
[
month
day

]
, the probabil-

ity of primitivity is slightly higher, about 63%.

128. Amazingly, many surfaces made from regular polygons can be

sheared, cut up, and reassembled back into the original surface in

the same way that we have done with the square, the L, and the

Wollmilchsau. One example is the regular octagon surface, shown in

Figure 97 sheared by the matrix
[
1 2(1+

√
2)

0 1

]
. The way to reassemble

the sheared octagon pieces is indicated with numbers.

Figure 97. Did you think that something like this could hap-

pen to the regular octagon surface? Do you believe that the
skinny diagonal thing is really a convex, non-regular octagon?

Every day is full of surprises.

(a)By coloring each piece of each edge of the original and sheared

octagons as in Problems 111 and 113, show that this reassembly re-

spects the octagon surface’s edge identifications. In other words, show

that this shear is an automorphism of the octagon surface.

We say that a shear in a cylinder direction twists that cylinder,

analogous to twisting the dough of a bagel (recall Figure 26). For

example, in Problem 111 the shear [ 1 m
0 1 ] twists the square torus’s

single horizontal cylinder m times.

(b) In Problem 121, you found the octagon surface’s two horizontal

cylinders. In the shear above, show that the top/bottom cylinder is

twisted once, while the middle cylinder is twisted twice.

2Thanks to Juan Souto for explaining this proof to me, at a bar in Dublin.
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(c) For each of the horizontal cylinders in the regular octagon surface,

find its modulus (recall Problem 122.) How is the modulus related to

the number of twists?

We previously said that the group of automorphisms of a surface

is called its Veech group (Problem 122). When the group is par-

ticularly nice – to be precise, when the group of automorphisms is a

subgroup of SL(2,Z) whose fundamental domain has finite area in the

hyperbolic plane; see § 33 – its Veech group is said to form a lattice.

A surface whose Veech group forms a lattice is called a Veech surface

or lattice surface.3 The square torus, the regular octagon surface, and

square-tiled surfaces are all examples of Veech surfaces.

They did the math # 29. William Veech

These notions are named for mathematicianWilliam Veech (They

did the math # 29), who got this field going and then did a lot of

tremendous work in it, including coming up with IETs and Veech

surfaces, and then proving results about all of their essential prop-

erties [60]. One of his original examples of a Veech surface was the

double regular octagon surface, chosen because its cylinders’ moduli

are equal. The picture shows (back row) Giulio Minervin, William,

Brendan Hassett, Fernando Gouvêa, Tim Cochran, Tamas Wiandt,

3They have traditionally been called Veech surfaces, but some people think that
too many things are named “Veech,” and are trying to change the terminology.
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Maxine Turner, Frank Jones, and Janie McBane; (front row) Reese

Harvey, John Polking, Donghoon Hyeon, and Joungmin Song at Rice

University in 2002.

129. An infinite-area surface

Consider the infinite staircase surface in Figure 98. It is a square-tiled

surface, where edges are identified across, horizontally and vertically,

as indicated. The pattern continues forever in both directions [28].

(a)How many cone points does the surface have? What is the angle

around each one? What is the genus of the surface?

(b) Identify some periodic trajectories on the surface.

(c)Decompose the surface into cylinders in the direction of slope 1/2.

Figure 98. The infinite staircase surface.
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28. The modulus miracle

I called the following result the modulus miracle when I was a Ph.D.

student, because I was absolutely shocked that it was true. Take any

regular polygon, glue two of them together to make a surface, and all

of its cylinders have the same modulus? Really?!

130. Theorem (modulus miracle). Every horizontal cylinder of a

double regular n-gon surface has same modulus, which is 2 cot(π/n).

(a)Confirm this for the two surfaces in Figure 99, by calculating the

modulus (“aspect ratio”; recall Problem 122) for each cylinder, and

also the number 2 cot(π/n).4

(b)Explain why this tells us that the horizontal shear
[
1 2 cot(π/n)
0 1

]
is always an automorphism of the double regular n-gon surface.

Figure 99. Calculate the moduli of these cylinders. Spoiler

alert! In each surface, they are equal.

Thus all surfaces made from a double regular polygon have rota-

tion, reflection and shearing symmetries, like the square torus.

The benefit of using a double regular polygon surface instead of

a single one is that all of the cylinder moduli are equal. If you do

use just a single polygon, like our familiar regular octagon surface,

then some of the cylinders have double the modulus of the others (see

Problem 128).

131. A particularly nice surface is the “golden L,” whose edge iden-

tifications and lengths are as shown in Figure 100. The golden ratio

φ = 1+
√
5

2 ≈ 1.618 satisfies the property that when you cut off the

largest possible square from a 1× φ rectangle, the leftover rectangle

has the same proportions as the original.

4For a proof, see [13], Proposition 2.4.
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Figure 100. That beautiful surface, the golden L.

(a) Show that the golden ratio satisfies the relation φ = 1 + 1/φ.

(b) Find the continued fraction expansion of φ. (Hint: Use part (a).)

(c)Numbers are commensurable if they are rational multiples of each

other. Are the moduli of the golden L’s cylinders commensurable?

They did the math # 30. Samuel Lelièvre

Samuel Lelièvre (They did the math # 30) has studied the

golden L surface in detail. In joint work with Jayadev Athreya (#

12) and Jon Chaika (# 28), he studied the gaps between slopes of

cylinder directions in the golden L [5]. It turns out that the golden L

and regular pentagon surfaces are closely related; the picture shows
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Samuel and the author in Providence in 2019, studying a transla-

tion surface made from ten sheared regular pentagons while wearing

coordinating T-shirts.

A big question is: “what happens to a trajectory on a surface

when you apply an automorphism?” For example, in Problem 32 we

explored the effects of rotations, reflections and a shear on a trajectory

on the square torus, and determined the effect of each automorphism

on the trajectory’s slope.

Figure 101. What happens when you repeatedly twist a
cylinder that has trajectory in it?

132. Let’s see what happens when we apply the horizontal shear [ 1 2
0 1 ]

to the L-shaped table, with a short vertical trajectory on it. Using a
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picture like Figure 101, sketch the image of this trajectory under five

applications of this shear. What would happen if you kept going?

As mentioned before, Barak Weiss (# 24) is the one who sug-

gested to me that interesting things can happen when you twist a

surface many times in a cylinder direction. Above, one cylinder fills

up, while the other stays empty. Samuel Lelièvre (# 30) and I used

this strategy to create the periodic billiard trajectory on the regular

pentagon that appears on the first page of this chapter, which has

more trajectory in some parts of the table than in others.

133. Our original motivation for studying the square torus was that

it was the unfolding of the square billiard table (Problem 11). In fact,

we can view all regular polygon surfaces as unfoldings of triangular

billiard tables. For example, let’s try unfolding the triangular billiard

table with angles (π/2, π/8, 3π/8) until every edge is paired with a

parallel, oppositely-oriented edge. In Figure 102, the edges are labeled

with numbers, and the orientations are indicated with arrows.

Figure 102. Unfolding a triangular billiard table into the

regular octagon surface.

This gives us the regular octagon surface! So the regular octagon

surface is the unfolding of the (π/2, π/8, 3π/8) triangle.

(a)Draw the “shooting into the corner” period-six trajectory (Prob-

lem 86) in the triangular billiard table (left). Then unfold it to a

periodic trajectory on the regular octagon surface (center & right).

Hint: This trajectory has period 2 on the regular octagon surface,

and passes through 6 triangles, including edges 1 and 7.
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(b)What triangle unfolds to the double regular pentagon surface?

Dissect the double pentagon to figure it out, and then draw the un-

folding as above.

ST

134. An ellipse with foci F1, F2 and string length ℓ (recall Problem

26) consists of all points P satisfying |F1P |+ |PF2| = ℓ. Similarly, a

hyperbola with foci F1, F2 and “string length” ℓ consists of all points

P satisfying |F1P | − |PF2| = ±ℓ: see Figure 103.

Figure 103. A confocal ellipse and hyperbola, with the

shared foci.

In Problem 26, we showed that a trajectory through the foci al-

ways passes through the foci. In Problem 39, we showed that a tra-

jectory outside the focal segment F1F2 stays outside and is tangent

to an ellipse with the same foci. Show that every segment of a tra-

jectory that passes between the foci is tangent to a hyperbola with

the same foci. Conclude that every segment of such a trajectory will

pass between the foci.

This nifty fact will enable us to construct an unilluminable room

in Problem 136.
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29. The slit torus construction

So far, we have seen a lot of beautiful surfaces that do beautiful

things. We have seen that a billiard trajectory with rational slope

on a square table is periodic, and a billiard trajectory with irrational

slope is aperiodic. It turns out that every aperiodic trajectory on the

square billiard table fills up the table evenly – the billiard flow in such

a direction is ergodic. That’s because the square billiard table unfolds

to a Veech surface. The Veech dichotomy (proved by William Veech,

# 29) says that for a given direction on a Veech surface, the billiard

flow in that direction is either periodic or ergodic.

When I first learned this, I thought it was obvious. After all,

what other possibilities are there? It turns out that there are many

other possibilities: surfaces where a trajectory is dense in one region

and doesn’t touch another region at all, or is half as dense in one

region as in another region – or just about anything you can imagine.

One nice demonstration of the first possibility is the slit torus.

Figure 104. The slit torus construction.

135. The slit torus surface is created by joining two square tori along

a slit, as shown in Figure 104. One of the tori has horizontal and

vertical edges as usual, and the other one is rotated so that its edges
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have an irrational slope. We cut a vertical slit in each one, and

identify the left and right edges A and B of one slit to the right and

left edges B and A of the other, as shown in Figure 104.

Edges A and B are vertical, but in the picture I have pulled them

apart a little bit so that you can see that there is a slit between them.

(a) In the top picture, I have drawn the first six pieces of a horizontal

trajectory. Draw the next ten pieces. Do you expect this trajectory

to be periodic?

(b)Explain why, over time, a horizontal trajectory through the slit

will end up looking like the bottom picture.

They did the math # 31. Moon Duchin

Moon Duchin (They did the math # 31) explained the slit

torus construction to me when I was a graduate student. Moon

started out working in translation surfaces, and now works on iden-

tifying gerrymandering and creating fair districting practices. The

picture shows Jane Wang (# 26), Viveka Erlandsson, Justin Lanier,

Moon, Solly Coles, Madeline Elyze, Aaron Calderon, Felipe Ramı́rez,

Andre Oliveira, Chandrika Sadanand (# 7), and the author in Somerville

during a 2017 billiards research program that Moon organized.
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136. The Penrose unilluminable room. We can pose the illumination

problem as: “Is every mirrored room illuminable from some point in

the room?” Figure 105 shows a counterexample, a room that cannot

be illuminated from any point inside [41]. The top and bottom are

half-ellipses, whose foci are at the black points. Explain why this

example works, by explaining which parts of the room are illuminated

when the candle is placed (a) in the interior of a half-ellipse, (b) in

the middle part, and (c) in one of the rectangular parts.

Figure 105. The Penrose unilluminable room.

We have seen that we can generate periodic directions on the

square torus in three ways: adding squares (Problem 105), adding

vectors (Problem 119), and applying shears (Problem 125). It turns

out that applying shears – and more generally, applying automor-

phisms of the surface – is the method that best generalizes to other

surfaces.

137. Figure 106 shows the first quadrant divided into four sectors,

each created by neighboring diagonals of the golden L whose corner

is at the origin.

(a)The dimensions of the golden L are given in Problem 131. Check

that the purple vectors shown spanning diagonals of the golden L are

[1, 0], [φ, 1], [φ,φ], [1, φ], [0, 1].
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(b)Explain why the blue matrix takes the entire first quadrant to

the blue sector. Check that its determinant is 1, meaning that it

preserves areas and orientations. Repeat for the three other colors.

Figure 106. The first quadrant, partitioned into four sectors.

Each of the matrices shown is an automorphism of the golden

L. The blue and red matrices are horizontal and vertical shears, re-

spectively. They are known as parabolic automorphisms. The green

and yellow matrices act similarly to shears in a diagonal direction,

but they tend to mix things up more than shears; they are known as

hyperbolic automorphisms.

138. In Problem 125, we repeatedly applied horizontal and vertical

shears to generate all of the periodic directions on the square torus.

In Problem 126, we explained how applying the two different shears

is essentially the continued fraction algorithm in reverse. Similarly,

to generate the set of all of the periodic directions on the golden L,

we start with the vector [ 10 ] and repeatedly apply the blue, green,

yellow, and red automorphism matrices. People describe this as a

“generalized continued fraction algorithm.” Explain.
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139. Surfaces with lots of symmetry are rare and precious. For some

time, regular polygon surfaces and square-tiled surfaces were the only

known Veech surfaces. Then William Veech’s (# 29) student, Clayton

Ward, discovered a larger family of such surfaces, now known as Ward

surfaces [61]. One way to describe a Ward surface is as a regular 2n-

gon with two regular n-gons, where alternating edges of the 2n-gon

are glued to one of the n-gons, and the remaining edges of the 2n-gon

are glued to the other n-gon (left side of Figure 107).

For n = 4, the Ward surface is an octagon and two squares, with

edges identified as shown below.

(a)Decompose this surface into horizontal cylinders, and check that

their moduli are commensurable.

Figure 107. Two views of the same Ward surface.

Ward actually represented this surface as a “flower”: you can cut

each of the squares into four pieces as shown in the left picture, and

glue the eight “petals” around the octagon, as shown on the right

side of the figure.

(b)Use the left picture to figure out which edges are identified in the

right picture, and write in edge labels to record it.
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30. The space of triangles

We have talked here and there about the space of all translation

surfaces. The following problem builds understanding about what it

means to have a space where each point represents an object.

140. Up to similarity and isometries, a triangle can be uniquely spec-

ified by its three angles α, β, γ. There are two restrictions on the

angles: α+ β + γ = π and α, β, γ > 0. So we can represent the space

of all possible triangles by the triangular part of the plane α+β+γ = π

that lies in the first octant, as shown in Figure 108. Each point of

the space represents a triangle. So the space of triangles is itself a

triangle! It’s easier to see the picture if we lay the triangle flat, as

shown.

Figure 108. The space of triangles is itself a triangle.

On a LARGE picture of the space of triangles, sketch the following:

(a) the set of right triangles (green),

(b) the set of isosceles triangles (blue),

(c) all triangles with angles 0.12π, 0.35π, 0.53π (black dots),

(d) the set of all acute triangles (shaded).
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141. In this representation of the space of all triangles, the angles

are marked − we keep track of which angle is α and which is β, so the

(0.12π, 0.35π, 0.53π) triangle is different from the (0.35π, 0.53π, 0.12π)

triangle. This is clearly redundant, so we can instead represent the

space of triangles with unmarked angles. This takes advantage of the

symmetries of the space of triangles to “fold up” the space so that

each triangle is only represented once.

(a)Explain why the space of unmarked triangles is represented by

just the red shaded part.

(b) Imagine folding up the space of triangles (grey) along all of its

lines of symmetry. Explain why this gives you just the red shaded

figure. Triangles with the most symmetry lie at the edges of this

smaller space. Explain.

142. (Continuation) Where can we find the triangles we love?

(a)We have seen that right triangles with a vertex angle of π/n unfold

to (possibly double) regular polygon surfaces. Sketch the set R of

these triangles on your picture.

(b)The Ward surface given in Problem 139 is the unfolding of the

triangle with angles π/16, π/4, 9π/16. Explain. What triangle unfolds

to the Ward surface given by a decagon with two pentagons? To the

surface with a dodecagon and two hexagons? Mark these triangles,

and the rest of the Ward family W , on the diagram.

The sets R and W are discrete in the space of triangles: for each

triangle t of R or W , it is possible to find a little region in the space

of triangles containing t, that does not contain any other point of R

or W . The fact that they are discrete makes these and the rest of the

Veech surfaces difficult to find!

(c) In the space of triangles, shade in the points that represent trian-

gles that we know have a periodic billiard trajectory (see # 18). How

much is left?

The zippered rectangle construction.

Figure 109 shows how to create a translation surface out of “zippered”

rectangles. The idea is that you glue together some rectangles, and

you also make some vertical cuts, like a zipper. As in the slit torus
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Figure 109. A rather complicated zippered rectangle.

construction (Problem 135), the two edges of each “zipper” are glued

to different places.

143. For the zippered rectangle surface in Figure 109:

(a)Consider the vertical flow on this surface. Show that its behavior

is described by a 7-IET.

(b) Show that the surface has nine vertices: two with 6π of angle

around them, and the rest with 2π of angle around them.

Notice that at the bottom of the zippers, the two flaps each have

their own vertex point, to indicate that these are typically not identi-

fied with the same point. The corners have empty points; you should
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label them with colors or letters as you identify each vertex of the

surface.

(c) Show that the surface has genus 3.

They did the math # 32. Pierre Arnoux

Pierre Arnoux (They did the math # 32) created the sur-

face in Figure 109 to give a geometric realization of his eponymous

Arnoux-Yoccoz IET (see Problem 167) [1]. The picture shows flat sur-

face enthusiasts Corentin Boissy, Anna Lenzhen, Serge Troubetzkoy,

Aslı Yaman, Samuel Lelièvre (# 30), Barak Weiss (# 24), Xavier

Bressaud, Pascal Hubert (# 23), Luca Marchese, Pierre, and Alexey

Glutsyuk in Moscow in 2012.

144. Recall the slit torus surface in Problem 135. Show that, for

the vertical direction, the left part of the surface has a cylinder de-

composition but the right part does not. This is another example of

behavior that fails to satisfy the Veech dichotomy. What about the

horizontal direction?
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31. We get a little bit wild

145. A wild translation surface.

Figure 110 shows the Chamanara surface [11]. The edges have lengths

1/2, 1/4, 1/8, . . .. Parallel edges of the same length are identified, as

shown. The pattern continues all the way into the corners.5

Figure 110. The Chamanara surface, which has infinitely
many edges. Here, the surface has a dark blob encroaching on
its vertices.

(a)Use vertex chasing (Problem 60) to show that the surface has two

vertices.

(b)But wait – how far apart are the two vertices? Find a short path

on the surface between the two vertices. How short of a path can you

find? Hmmm. . .

5The content of this problem comes from Anja Randecker’s thesis [42].
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(c) Show that the Chamanara surface has a cylinder decomposition in

the direction of slope 4, and that all of the cylinders in this direction

have modulus 51/4. Indeed, show that for every integer n, it has a

cylinder decomposition in the direction of slope 2n.

(d)As you can see, this Chamanara surface has a dark blob that is

gradually filling up the surface, avoiding but approaching the vertices,

that is growing out towards the corners. Show that (contrary to

appearances) the complement of this blob is connected! This makes

the surface “wild.”

They did the math # 33. Anja Randecker

Anja Randecker (They did the math # 33) studied wild trans-

lation surfaces for her Ph.D. thesis [42]. She determined that wild

translation surfaces had an important property that no one had iden-

tified before, so she studied it, and named it xossiness: ex istence of

short saddle connections intersected not by even shorter saddle con-

nections. The picture shows the author and Anja in Heidelberg in

2022.

In Problem 115, we found that the family of trajectories in a given

direction (known as a foliation) on a particular translation surface

has exactly the same behavior as a certain 3-IET. You might wonder:

given any IET, can you find a translation surface, and a foliation
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direction, that matches the IET’s behavior? Yes, you can, using a

suspension.

Given any IET, do the following (Figure 111):

(1) First, for each break point in the top part of your IET,

choose a “height” (possibly 0), and draw edges that attain

each of the heights (top picture).

(2) Color-code your edges and translate copies of them corre-

sponding to the bottom part of the IET (middle picture).

(3) Finally, make it into a translation surface (bottom picture).

Ta-da! You have a translation surface whose vertical foliation has

exactly the same behavior as your IET.

Figure 111. Suspending an IET to create a flat surface.
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146. Make up an IET with at least four intervals, different from the

above. Suspend it to create a corresponding translation surface, as

described above.

147. You and your true love are looking into the same mirror. You

are staring into each other’s eyes, in the reflection (Figure 112). Are

you both looking at the same point on the mirror? Or, considering

that people have two eyes, we could ask: is it possible to draw a pair

of glasses on the mirror so that each of you sees the other’s eyes in

the glasses?

Figure 112. Are these cuties looking at the same point on

the mirror?

The biggest open problem in the study of Veech surfaces is: Can

we find more Veech surfaces? and the related question, Have we

found them all yet? Here are the families of Veech surfaces we have

seen so far in this book:

• square-tiled surfaces (Problems 116, 122);

• regular polygons: double regular n-gons for any n, and single

regular n-gons for even n (Problem 130);
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• Ward surfaces: a regular 2n-gon, with two regular n-gons

glued to it along alternating edges (Problem 139).

For any m ≥ 2, and any n ≥ 3, the (m,n) Bouw-Möller surface is

created by identifying opposite parallel edges of m semi-regular 2n-

gons. A semi-regular polygon is an equiangular polygon with an even

number of sides, whose edge lengths alternate between two values,

possibly equal and possibly 0. So that the cylinder moduli in Bouw-

Möller surfaces are equal, the kth semi-regular 2n-gon has edge lengths

alternating between sin kπ
n and sin (k+1)π

n [26].

148. (a)Explain why a semi-regular 2n-gon, half of whose edge lengths

are 0, is a regular n-gon.

(b)The m = 6, n = 5 Bouw-Möller surface is shown in Figure 113.

Edge identifications are indicated by numbers (for the reasoning be-

hind the zig-zag edge-numbering system, see § 37). Shade each hor-

izontal cylinder a different color. Does it seem plausible that all of

the cylinders have the same modulus?

(c) For the m = 4, n = 3 Bouw-Möller surface: How many polygons

does it have? How many edges does each polygon have, and what are

their lengths? Sketch it.

Figure 113. The m = 6, n = 5 Bouw-Möller surface.

In 2006, Martin Möller (They did the math # 34) and Irene

Bouw showed that double regular n-gon surfaces (two polygons) and
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They did the math # 34. Martin Möller

Ward surfaces (three polygons) are the simplest examples in a larger

family of Veech surfaces with any number m ≥ 2 of polygons, now

called Bouw-Möller surfaces [8]. Irene and Martin gave an algebraic

description of the surfaces, and later, Pat Hooper (# 22) found a

polygonal description, as shown in Figure 113 [26]. The picture shows

Erwan Lanneau, the author, and Martin running in Marseille in 2017.
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32. Moving around in the space of surfaces

149. The rel deformation. Consider the translation surface in Figure

114, created by suspending an IET as in Problem 146.

(a)Confirm that the surface has two cone points, as suggested by the

black and white dots.

Figure 114. Moving the white vertices relative to the black

vertices, a rel deformation, yields a nearby surface. Dashed
lines pass through white vertices, and solid lines through black

vertices.

One way to get a new translation surface “near” the original one

is to deform the surface by moving one cone point relative to the

other. This is known as a rel deformation [27]. The arrows in the

top picture indicate that we will shift the white point slightly to the
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right. The bottom picture shows the surface after this deformation,

along with the associated deformed IET.

(b)Explain what it means to be a “nearby” surface.

(c)How far can you push the white point to the right, and still create

a valid translation surface? What about moving the white point in

other directions – left, up, down, diagonally, etc.?

(d) Show that both of the above surfaces are in the stratum H(1, 1)

(recall Problem 87). The rel deformation is thus a way to move con-

tinuously among a family of surfaces in H(1, 1). Explain.

150. Figure 115 shows the regular octagon surface (left), the double

pentagon surface (center), and their singular friend (right).

(a) Show how to smoothly deform the regular octagon surface into

the double pentagon surface.

(b) In Problem 87, you showed that both of these surfaces are in

H(2). Suppose that we further deform the double pentagon surface

into the double square surface (right). Explain why this surface is on

the boundary of H(2). What kind of surface is it?

Figure 115. A belt-tightening operation on surfaces in H(2).

The above examples show that we can move around the space of

surfaces in a given stratum. As we move around, most of the surfaces

we encounter are like the one in Problem 149: “random” surfaces

with no nontrivial automorphisms, or in other words, no rotations,

reflections, or shears that preserve the structure of the surface.

On the other hand, the three surfaces in Figure 115 are Veech

surfaces, with nice symmetries. But as we move in H(2) to get from
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one to the other, the surfaces we encounter in between are typically

not Veech surfaces. As mentioned in Problem 141, Veech surfaces

are discrete: we cannot move continuously among a family of Veech

surfaces. This makes them difficult to find. When someone discovers

a new family of Veech surfaces, it is a big deal.

In 2016, Curt McMullen (# 14), Ronen Mukamel (# 35), and

Alex Wright (# 17) discovered the gothic family of Veech surfaces,

so named because they look like the floor plan of a Gothic cathedral

[35]. The edges have slope 0, ∞, and ±1, and are identified as shown

in Figure 116. Its dimensions are as indicated; the lengths a and b

determine the surface.

Figure 116. A blueprint for gothic Veech surfaces.

151. Show that each such surface has (a) five horizontal cylinders

and five vertical cylinders; (b) three cone points, as indicated; and

(c) genus 4.

The real key in showing that members of the gothic family are

Veech surfaces is to carefully choose the measurements of a and b. It

turns out that it is possible to choose rational numbers x, y and an
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integer d ≥ 0 such that when

a = x+ y
√
d and b = −3x− 3/2 + 3y

√
d,

the surface is a Veech surface [35].

152. What stratum are the gothic surfaces in? Explain why this con-

struction does not give a continuous family of gothic lattice surfaces

in this stratum.

They did the math # 35. Ronen Mukamel

Ronen Mukamel (They did the math # 35) coauthored the

result described above. He subsequently took a job working on com-

putational biology and genetics. The picture shows Ronen with the

author, pretending to do math in the Frankfurt airport in 2014.



Chapter 5

Further topics and tools

A long periodic tiling billiards trajectory that resembles the
Rauzy fractal

Each of the sections in this chapter is a set of problems that explores

a single topic or tool. Do you want to learn every single one of these

things? Probably not! But if you happen to need one of these ideas,

155
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you’ll be glad that I’ve written a set of problems about it. The best

way to learn a new piece of mathematics is to work out some problems

about it, so. . . let’s get started.

Unlike in the rest of the book, these problems are not scaffolded or

spaced out: problems on the given topic go one right after another,

so it is key to understand one problem before working on the very

next one. The average difficulty of the problems in this chapter is

higher than in the rest of the book. Each section is independent of

the others, except as noted.

You can do it!
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33. The modular group

In Problem 140, we explored the space of all triangles. Now we’ll

explore the space of all tori. We’ll do this by considering the space

of surfaces made by gluing opposite parallel edges of parallelograms.

In particular, if you can cut and paste one parallelogram surface into

another while respecting the edge identifications, we’ll consider those

to be the same surface.1

Given any parallelogram, do the following (Figure 117):

• Translate and rotate the parallelogram until its short edge

is on the x-axis, and the parallelogram lies above the x-axis.

• Scale the parallelogram so that its short edge has length 1

and coincides with the segment [0, 1] on the x-axis.

Figure 117. A normalized parallelogram.

153. Given a parallelogram translated, rotated and scaled (or “nor-

malized”) as described above:

(a) Show that its upper-left corner uniquely determines its shape.

(b) Show that the upper-left corner always lies outside the unit circle.

Now we want to mod out by cut-and-paste equivalence of par-

allelogram surfaces. To make this happen, we can cut and paste

triangles (as suggested by Figure 118), while respecting the surface’s

edge identifications, to yield an equivalent surface represented by a

different parallelogram.

1Thanks to Kathryn Lindsey for giving me a personal lecture on this topic in 2016,
and to Samuel Lelièvre for helping to make my dreams for this section become reality.
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Figure 118. Cutting and pasting a parallelogram surface to

yield, in some sense, exactly the same parallelogram surface.

154. Show that, under cut-and-paste equivalence, every normalized

parallelogram is equivalent to a parallelogram whose top-left vertex

lies in the infinite vertical strip [−1/2, 1/2]× [0,∞]. Justify the claim

that every normalized parallelogram can be represented by a point in

the shaded region of Figure 118, which is meant to extend infinitely

upward.

The shaded region in Figure 118 is known as a fundamental do-

main. Problem 156 shows that we can choose any region shown in

Figure 119 as our fundamental domain. People traditionally choose

the one shaded in Figure 118.

155. It is possible that, after a cut-and-paste equivalence, the short

side of your parallelogram is no longer the one on the x-axis, so you

must switch edges and rescale. Give an example of such a parallelo-

gram.

156. On Figure 119, mark all of the points in the upper halfplane

that represent a 2× 1 rectangle surface, or any surface equivalent to

it under the actions described above. Two such points are marked

for you. Hint: there is one corresponding point in each of the colored

tiles. If you think of this as the hyperbolic plane, the points are

reflections of each other across their hyperbolic geodesics boundaries.

Can you explain why?
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Figure 119. The upper halfplane, partitioned into funda-

mental domains for the space of parallelogram tori. In reality,
infinitely many tiny regions cover the space all the way to the

boundary; the picture only shows finitely many.

When working with the square torus, we used its Veech group,

which is SL(2,Z): the special (determinant 1) linear group with inte-

ger entries. Now we will work with SL(2,R), the special linear group

with real-valued entries. The Iwasawa decomposition says that any

matrix in SL(2,R) can be written as a product of matrices of the

form K (compact), A (abelian) and N (nilpotent):

K =

[
cos θ − sin θ

sin θ cos θ

]
, A =

[
λ 0

0 1
λ

]
, N =

[
1 x

0 1

]
.

We wish to understand how the elements of SL(2,R) act on tori. In

particular, we want to know how SL(2,R) acts on the space of all

tori that we defined in Problem 154. Since every matrix in SL(2,R)

can be written as a product of matrices of the form K, A, and N , the

problem reduces to understanding the effects of these actions. Our

normalization requires that one edge lies on the x-axis, so we ignore

rotations, and focus on A (geodesic flow) and N (horocycle flow).

157. To see a beautifully animated view of the action of these flows on

lattices, watch the short video Shape of Lattices by Pierre Arnoux and

Edmund Harriss: https://www.youtube.com/watch?v=vLrliPt4Uc0.

Then say which geometric actions described in the video correspond

to K, A, and N , respectively.

158. Consider two of the points representing 2 × 1 rectangles, and

the effect of horocycle flow and geodesic flow on them.

https://www.youtube.com/watch?v=vLrliPt4Uc0
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(a) Show that, for a point above y = 1, horocycle flow acts as indi-

cated by the arrows in Figure 120: a push to the right.

(b) For each of the points, apply a tiny bit of horocycle flow, e.g.,[
1 1/10
0 1

]
, and then normalize as described at the beginning of this

section. What happens to the points?

(c)Do the same for a tiny bit of geodesic flow, e.g.,
[
11/10 0

0 10/11

]
.

Figure 120. Understanding horocycle and geodesic flows.

They did the math # 36. Marina Ratner

Marina Ratner (They did the math # 36) proved several pow-

erful theorems, which together are known as Ratner’s measure and or-

bit classification for unipotent flows on homogeneous spaces [43–45].
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These are key tools in the fields of dynamical systems and ergodic the-

ory, and inspired lots of further work. In her Ph.D. thesis, she studied

geodesic flows, and in her later work, she proved several important

“rigidity” results about horocycle flows: precisely the two types of

flows that we analyzed above. The picture shows Marina (front row)

with François Ledrappier, Dmitry Kleinbock, Hillel Furstenberg, and

Hee Oh in Banff in 2005. Marina died in 2017.
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34. Renormalization

159. Renormalization and the Rauzy gasket. Consider a triplet of

numbers (a, b, c), where a, b, c > 0 and a + b + c = 1. You can think

of these points as living on the same triangular piece of the plane

x + y + z = 1 as the space of triangles (Figure 108). Repeatedly

perform the following algorithm:

(1) If

a > b+ c, subtract b+ c from a so that

(a, b, c) 7→ (a− b− c, b, c).

b > a+ c, subtract a+ c from b so that

(a, b, c) 7→ (a, b− a− c, c).

c > a+ b, subtract a+ b from c so that

(a, b, c) 7→ (a, b, c− a− b).

and if none of these are true, STOP.

(2) Rescale the values so that they sum to 1.

(a) Show that (7/12, 4/12, 1/12) 7→ (2/7, 4/7, 1/7) 7→ (2/4, 1/4, 1/4).

(b) Let α ≈ 0.54369 be the real solution to the equation x+ x2 + x3 = 1.

Show that

(α, α2, α3) 7→ (α3, α, α2) 7→ (α2, α3, α) 7→ (α, α2, α3),

so that this is a periodic point.

For most points, their iterated images eventually fail the condi-

tion that one element is greater than the sum of the other two, so the

algorithm stops. But there are infinitely many points that can keep

going in the algorithm forever; these points form a fractal set known

as the Rauzy gasket, shown in Figure 121.2

Whoa.

The algorithm above is considered a renormalization algorithm,

because at the end of each step, you “normalize” so that the sum of

the coordinates is 1. In Problem 154, we normalized parallelograms.

Renormalization algorithms are a powerful tool.

2Thanks to Samuel Lelièvre (# 30) for creating the Rauzy gasket picture with me.
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Figure 121. The awe-inspiring Rauzy gasket.

160. The algorithms that we performed on square torus trajectories

(Problem 53) and on their corresponding cutting sequences (Problem

58) are also renormalization algorithms. Explain.

They did the math # 37. Alexandra Skripchenko

Sasha Skripchenko (They did the math # 37) studied the

Rauzy gasket. In joint work with Pascal Hubert (# 23) and Ivan

Dynnikov, she answered a question of Pierre Arnoux (# 32) to show

that its Hausdorff dimension is less than 2 [21]. The picture shows
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Sasha in Warwick in 2018, giving a talk about this work. The picture

on the chalkboard is the Arnoux-Yoccoz IET (§ 36).

161. Let

M1 =

1 1 1

0 1 0

0 0 1

 , M2 =

1 0 0

1 1 1

0 0 1

 , M3 =

1 0 0

0 1 0

1 1 1

 .

(a)Given a triplet of numbers (a, b, c) where a, b, c > 0 and a+ b+ c = 1,

show that you can implement the algorithm from Problem 159 by mul-

tiplying the column vector
[
a
b
c

]
by suitable inverses of M1, M2, and

M3.

(b)Consider a finite product M of M1, M2, and M3 that includes at

least one copy of each of the three (e.g., M = M1M3
2M2M1), and

suppose that (a, b, c) has the property that

M
[
a
b
c

]
= λ

[
a
b
c

]
for some real number λ.3 Show that (a, b, c) is a point in the Rauzy

gasket.

(c) Show that every point of the Rauzy gasket can be obtained in

this way.

(d)Explain why at least one copy of each of M1,M2,M3 is needed.4

Hint : Notice that, for example, M1
−1(a, b, c) = (a − b − c, b, c), so if

M1
−1(a, b, c) = λ(a, b, c), this is a fixed point of the Rauzy algorithm

where the first entry is the largest. You can make a similar argument

for a product of Mi’s. Given a periodic point in the Rauzy gasket, if

we write down the sequence of which entry is largest, we can associate

to it a product ofMi’s, and our point is an eigenvector of that product.

3In other words,
[ a

b
c

]
is an eigenvector of M .

4Thanks to Vincent Delecroix (# 21) for explaining how to use the matrices in this
problem to work with the Rauzy gasket. In the picture for #21, you can see a picture
of the Rauzy gasket, and the matrix M1 from Problem 161, on the chalkboard.
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35. We find the Rauzy fractal in tiling billiards

162. In a tribonacci sequence, each term is equal to the sum of the

previous three terms. Find the first 12 terms of the tribonacci se-

quence beginning 0, 0, 1, . . ..

163. Substitutions. Consider a sequence of words made out of two

letters, a and b. We use the following substitutions:

a 7→ ab, b 7→ a.

(a)Compute the first eight terms of the sequence a, ab, aba, abaab,

. . .

(b) Show that the sequence of lengths of words is the Fibonacci se-

quence.

(c)Comment on any patterns you notice.

(d)Using the longest word you created above, plot a “broken line”

in the following manner: start in the lower-left corner of a piece of

graph paper, and when you read an a, step to the right, and when

you read a b, step up. Plot the resulting walk.

Notice that the points stay close to a line of slope 1/φ ≈ 0.618.

164. Now consider a sequence of words made out of a, b, and c, with

the substitutions

a 7→ ab, b 7→ ac, c 7→ a.

Find the first 6 terms of the sequence a, ab, abac, . . . and comment

on any patterns.

Suppose that you use the resulting sequence to take a three-

dimensional “walk” similar to the one in the previous problem, where

a, b, and c tell you to take steps in the x-, y-, and z-directions, re-

spectively. It turns out that, as in the previous problem, the points

on this walk stay close to a line, now in 3D space. If we project these

points in the direction of the line, onto a plane perpendicular to the

line, we get a cluster of points that approach the Rauzy fractal, shown

in Figure 122.
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Figure 122. The Rauzy fractal.

165. Finding the Rauzy fractal in tiling billiards trajectories. Define

α ≈ 0.54369 as in Problem 159, as the real solution to x+x2+x3 = 1.

Consider tiling billiards on a triangle tiling with angles

π(1− α)

2
≈ 41.0679888577◦,

π(1− α2)

2
≈ 63.396203173◦,

π(1− α3)

2
≈ 75.535807969◦.

(a) Fire up the applet https://awstlaur.github.io/negsnel/, se-

lect “New Triangle Tiling [angles]”, and type in two of the above

angles. Note: things only get interesting when the angles are irra-

tional, so enter all the digits listed above, to make the angles as close

to irrational as possible.

(b)Move the green dot to the circumcenter of the triangle. You will

have to approximate this as best you can. You will know when you

are doing well because the trajectory will suddenly become very long.

Figure 123. A large tiling billiards trajectory that bears a
striking resemblance to the Rauzy fractal.

https://awstlaur.github.io/negsnel/
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(c)Move the red and green points to make a trajectory that is as

long as you can. If your path does not close up, remember to increase

the iterations! Can you find a periodic trajectory larger than the one

shown in Figure 123?5

As you find longer and longer trajectories, their appearance ap-

proaches that of the Rauzy fractal. Can you believe it?

Recall that in Problem 104, we explained that the orbit of a

tiling billiards trajectory on a triangle tiling is equivalent to orbit

of a point on a certain fully flipped circle exchange transformation

(FFCET). For the triangle tiling whose angles are given in Problem

165, the associated FFCET is the Arnoux-Yoccoz IET, which we will

see in the next section. Pat Hooper (# 22) suggested in 2016 that

we look in this direction; he guessed that if we looked at the triangle

tiling associated to the Arnoux-Yoccoz IET, we would probably find

something interesting, and he was right.

166. The Rauzy fractal is a “tribonacci shape,” in that three smaller

copies of it join together to make one large copy of the same shape,

as shown in Figure 124. Explain.

Figure 124. Three Rauzy fractals combine to

make. . . another Rauzy fractal. Fractals out here ex-
hibiting fractal behavior!

Our number α ≈ 0.54369 is just one point in the Rauzy gasket

(Problem 159). It turns out that when you make a triangle tiling

based on any point in the Rauzy gasket, tiling billiards trajectories

5See the second half of the video “Refraction Tilings” by Ofir David on YouTube
at https://www.youtube.com/watch?v=t1r1cO1V35I.

https://www.youtube.com/watch?v=t1r1cO1V35I
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They did the math # 38. Olga Paris-Romaskevich

passing near the circumcenter always give you fractal behavior. Olga

Paris-Romaskevich (They did the math # 38) and Pascal Hubert

(# 23) proved this, and many other tiling billiards results [29,37,38].

The picture shows Olga with the author in Lyon in 2018, about to

partake of a tasty French meal.
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36. The Arnoux-Yoccoz IET and arithmetic
graphs

167. The Arnoux-Yoccoz IET. Define α ≈ 0.54369 as in Problems

159 and 165, as the real solution to x+ x2 + x3 = 1.

(1) Divide the unit interval into 6 subintervals I1, I2, . . . I6 with

consecutive lengths α/2, α/2, α2/2, α2/2, α3/2, α3/2.

(2) Switch the pieces of the same length.

(3) Cut the interval in half and switch the halves.

The construction is illustrated in Figure 125. (Notice that I1 gets

broken into two pieces.) We have seen this IET before, in another

form: the vertical flow on the zippered rectangle surface in Problem

143 is the same as this IET. This transformation is ergodic, meaning

that the orbit of every point fills in the space evenly [1].

Figure 125. The famous Arnoux-Yoccoz IET.

(a)Choose a point on the interval, and follow its orbit for 10 iterations

as it lands in intervals I1, . . . , I6. Make a note of the sequence of

intervals it ends up in, for use in the next problem. Does it seem

plausible that the transformation is ergodic?
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Written as a piecewise function, the Arnoux-Yoccoz IET is

f(x) =



f1(x) = x− α−1
2 mod 1 if x ∈ I1 ≈ [0, 0.27185]

f2(x) = x+ α3−1
2 mod 1 if x ∈ I2 ≈ [0.27185, 0.54369]

f3(x) = x− α3−1
2 mod 1 if x ∈ I3 ≈ [0.54369, 0.69149]

f4(x) = x+ α2−1
2 mod 1 if x ∈ I4 ≈ [0.69149, 0.83929]

f5(x) = x− α2−1
2 mod 1 if x ∈ I5 ≈ [0.83929, 0.91965]

f6(x) = x+ α−1
2 mod 1 if x ∈ I6 ≈ [0.91965, 1]

.

(b)Check that the orbit of your point under this function matches

what you found in part (a).

(c)The Arnoux-Yoccoz IET has seven intervals, but there are only

six parts to the piecewise function above. Are you concerned?

We love being able to visualize the behavior of an IET in two di-

mensions. Efforts to do so that we have seen so far include graphing

the associated piecewise function (Problem 123), tiling billiards (e.g.,

Problem 104), and suspending an IET (Problem 146) or making it

part of a zippered rectangle (Problem 143). The form of the func-

tion above, with three pairs of related operations, suggests another

method, of creating a “walk” in the plane. Let’s do that.

168. (Continuation) Let a,b, c be the vectors shown on the left side

of Figure 126, chosen so that a+ b+ c = 0. Recalling the piecewise

function f(x) from Problem 167, we define a related function g(z) on

the plane:

g(z) =



g1(z) = z + a

g2(z) = z − c

g3(z) = z + c

g4(z) = z − b

g5(z) = z + b

g6(z) = z − a

.

We choose any number x ∈ [0, 1], and we start at any point z in

the plane. We iterate the Arnoux-Yoccoz IET on x, by applying some

sequence of functions fi, for example f2, f5, f1, . . ., to x. At the same
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time, we apply the corresponding functions gi, e.g., g2, g5, g1, . . ., to

z and its images. This amounts to adding the vectors ±a,±b,±c,

yielding a walk on the triangular grid.

Plot the walk corresponding to the orbit of your point from Prob-

lem 167 on an equilateral triangle grid. Does it close up?

Figure 126. Equilateral triangle vectors, and a grid.

The “walk” shown above is known as an arithmetic graph.6 Rich

Schwartz (# 3) has made significant use of arithmetic graphs in his

exploration of the behavior of outer billiards on polygons, and in his

proof that every triangle whose largest angle is less than 100◦ has a

periodic inner billiard orbit [47,48].

169. The Arnoux-Yoccoz IET is pictured in Figure 127, with our

usual convention of “flow up, then shift when you come down.” As

the arrows suggest, we are applying a rel deformation (recall Problem

149). We leave the black vertices fixed, and shift the white vertices

to the right, as the picture shows.

Figure 127. A rel deformation of the Arnoux-Yoccoz IET.

6Since “arithmetic” is used as an adjective here, it is pronounced air-ith-MET-ic.
This follows the same differential adjective/noun syllable stress pattern as e.g. “I’ll
reCORD a REcord, and disCOUNT it with a DIScount.”
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(a)Check that the picture is consistent, e.g., the red subinterval has

a black vertex on its left end and a white vertex on its right end, for

both copies.

(b)Also check that the picture is consistent at the endpoints (0 and

1) of the interval.

They did the math # 39. Gérard Rauzy

The Rauzy fractal, which we saw in §35 and will imminently see

again, is named for Gérard Rauzy (They did the math # 39).

Gérard was especially interested in Fibonacci and tribonacci substi-

tutions, and discovered his eponymous fractal [46]. The picture shows

a group of mathematicians at Pierre Arnoux’s (# 32) apartment in

Marseille in 2006: (back row) Théodore Tapsoba, Julien Cassaigne,

Christian Mauduit, Jun-Ichi Tamura, Shunji Ito, Sébastien Ferenczi,

Teturo Kamae, Hiromi Ei; (front row) Hiroko Kamae, Gérard Rauzy,

and Geneviève Macquart-Moulin.

It so happens that any walk on the triangular grid corresponding

to the orbit of a point on the Arnoux-Yoccoz IET, such as the one

you computed in Problem 168, is unbounded. On the other hand, if

you change the Arnoux-Yoccoz IET via a rel deformation by some
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tiny amount r, any walk corresponding to the orbit of a point on the

rel-deformed IET is periodic, with larger periods as r → 0 [27].

170. (a) Let r = 0.03. Write out the rel-deformed Arnoux-Yoccoz

IET, which is a modification of the six-part function in Problem 167.

(b)Compute the orbit of the point x = 0.4 on the rel-deformed IET.

Show that its period is 17.

(c) Show that the arithmetic graph corresponding to the orbit of

x = 0.6 is as shown in Figure 128. The red point is the starting

point.7

Figure 128. An arithmetic graph corresponding to a walk
based on the rel-deformed Arnoux-Yoccoz IET.

The eight shortest arithmetic graphs corresponding to this con-

struction, and the 15th-shortest, are shown in Figure 129 [27]. It’s

the Rauzy fractal again!

7Thank you to Pat Hooper (# 22) for helping to make my dreams for this section
become reality.
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Figure 129. Long walks on the. . . Rauzy fractal!
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37. Transition diagrams

Recall our friend the square torus, with horizontal and vertical edges

labeled A and B, respectively. We have explored many ways of under-

standing linear trajectories on the square torus, including transform-

ing the geometric problem about trajectories into a combinatorial

problem about cutting sequences. Transition diagrams inject some

geometry back into those cutting sequences, via a flow chart of which

edge labels can follow which others.

Figure 130. Transition diagrams for the square torus.

In the top-left picture of Figure 130, we have restricted trajecto-

ries to those that go left to right with slope ≥ 1. For such trajectories,

A can be followed by A or B (red arrows), and B can only be fol-

lowed by A (orange arrow). We represent this information using the

transition diagram shown at the bottom left of the figure. For the

top-right picture, we use trajectories with slope between 0 and 1, and

the situation is similar: A can only be followed by B (red arrow),

while B can be followed by either A or B (orange arrows).

Now that we have this transition diagram, an alternative way to

do Problem 38 is to say: “A cutting sequence with AA is valid only on

the first transition diagram, and a cutting sequence with BB is valid

only on the second transition diagram, so no valid cutting sequence

can have both AA and BB.”

Now, let’s look at a different surface: the double regular pentagon.

For the double pentagon, the symmetries of the surface allow us to

restrict our attention to trajectories with angle between 0 and π/5,

indicated by the shaded sectors in Figure 131.
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Figure 131. Edge transitions for the sector [0, π/5] on the
double pentagon.

171. For trajectories within the sector [0, π/5] of directions:

(a) First, consider a trajectory that passes through edge 1. Check

that edge 1 can only be followed by edge 2 (red arrow), because going

to any other edge would require going down (e.g. to edge 4 in the

right pentagon), or going too steeply upward (e.g. to edge 3 in the left

pentagon). By similar logic, argue that edge 2 can only be followed

by edge 1 or edge 3 (orange arrows), and so on.

(b)Work through all five edges, and confirm that the transition dia-

gram below the surface accurately reflects the allowed transitions for

cutting sequences corresponding to such trajectories.

(c)Confirm that the cutting sequence 2343 corresponds to a valid

periodic trajectory on the surface (white), and also that it corresponds

to a periodic path on the transition diagram.

172. Draw the transition diagram for the double pentagon corre-

sponding to the set of trajectories whose angle is between π/5 and

2π/5. Hint : it is similar in form to the one we computed above.
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The purpose of transition diagrams is that they allow us to deter-

mine the direction of a trajectory without having to draw a picture.

For the square torus, if a cutting sequence is valid on the left transi-

tion diagram in Figure 130, its slope is greater than 1, while if it is

valid on the right transition diagram, the slope is less than 1.

Similarly, for a cutting sequence corresponding to a trajectory on

the double pentagon, you can determine which of the five transition

diagrams – one was given, you drew a second, and there are three

more – it is valid on, and this will tell you the trajectory’s direction.

This reduces the geometric problem about trajectories and surfaces

to a combinatorial problem about symbols, which is much easier to

characterize and check.8

173. Ooh, now things get more interesting! Recall the Ward sur-

face from Problem 139. We restrict to angles between 0 and π/8, as

suggested by the darkened sectors in Figure 132.

Figure 132. Building a transition diagram for the octagon-
square Ward surface.

8Everything I know about transition diagrams, I learned from a paper by John
Smillie and Corinna Ulcigrai (# 8), Symbolic coding for linear trajectories in the
regular octagon [55], which defined them as above and worked out the example of the
square torus in detail; see their § 1.2 and Figure 2.
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(a)A few of the arrows on the surface, and on the corresponding

transition diagram, are given in Figure 132; you fill in the rest.

(b)The “zig-zag” numbering system looks a little unnatural on the

double pentagon surface and on the octagon-square Ward surface, but

it sure does make the transition diagram turn out nicely. Explain.

The zig-zag numbering can also make the cutting sequence itself

very pleasing. To see an example of this, look at the example of a

cutting sequence on the double pentagon given in the Glossary entry

for “cutting sequence.” Follow along the trajectory and read off the

cutting sequence, and see how nice it is!

I came up with the zig-zag numbering scheme myself, and I think

it’s awesome [16]. Before I discovered zig-zag numbering, my tran-

sition diagrams for Ward and Bouw-Möller surfaces were a jumbled

mess and I couldn’t understand what was going on. But with the

zig-zag numbering, the transition diagrams have a clear rectangular

structure, so I was able to prove theorems about them. This is an

example of where the right notation makes a huge difference.

Figure 133. The m = 6, n = 5 Bouw-Möller surface, with

edge identifications indicated by tiny numbers in the zig-zag
numbering system.

174. (Challenge) Recall the m = 6, n = 5 Bouw-Möller surface from

Problem 148, shown in Figure 133.
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(a)What should the angle restriction be on trajectories for this sur-

face, given its symmetries?

(b) Fill in the rest of the transition diagram in Figure 134. The

locations of some of the nodes are given; you figure out where the

rest should go, and also the arrows.

Figure 134. A structure for the transition diagram for the

m = 6, n = 5 Bouw-Möller surface, with most of the informa-
tion left to fill in.
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38. Rauzy-Veech induction

Rauzy-Veech induction is a tool for simplifying, and thus better un-

derstanding, the behavior of IETs [59]. We’ll use the example of the

4-IET from Problem 123, shown on the top line of Figure 135.

• First, choose one end of the IET or the other. Typically,

people choose the right end, as we do here.

• Of the two subintervals that are at the right end, one is

longer than the other; this interval is said to “win,” and the

other one is said to “lose.” For our IET, D wins and B loses.

• Chop off the end of the IET, the length of the losing inter-

val. Follow the path of that losing interval for one iteration:

Here, B becomes the right end of D. So in the next line, we

replace the right end of D with B, to get a new IET.

• Repeat this process with the new IET, over and over.

Figure 135. Three steps of Rauzy-Veech induction on a

4-IET.

175. Draw the diagrams for the next three steps of Rauzy induction9

on the above IET. Notice that the only intervals that change are the

ones that are “fighting”: for example, in the first step above, D and

B are fighting, so the red and yellow intervals A and C stay exactly

the same from the first picture to the second. Can you explain why?

9Sometimes, people drop the “Veech.” Recall the footnote for # 29.
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176. In Figure 136, the length ratio of segments A toB is 7:5. Perform

Rauzy induction on this IET until both segments are the same length.

Then compare with your work in Problems 8 and 21 and explain

the relationship between Rauzy induction and the continued fraction

algorithm.

Figure 136. A 2-IET for practicing Rauzy-Veech induction.

We want to know if we get back to an IET that is combinatori-

ally “the same” as the one we started with. For the 4-IET in Figure

135, we can keep track of the Rauzy induction steps via the following

notation:

( A B C D
D A C B )

top−−−−−→
(D wins)

( A B C D
D B A C )

bottom−−−−−→
(C wins)

( A B C D
D B A C )

top−−−−−→
(D wins)

( A B C D
D C B A )

177. Write down the notation for the next three steps of Rauzy

induction, corresponding to your diagrams from Problem 175.

They did the math # 40. Carlos Matheus

Carlos Matheus (They did the math # 40) works on dynami-

cal systems and number theory, including IETs, translation surfaces,

orbits, strata, and many of the other objects introduced in this book.
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I took the content of Problems 176 and 178 from a talk he gave10 in

July 2023 in Marseille, shown in the picture.

178. Starting from the IET represented by ( A B C D
D C B A ), shown in the

middle of the diagram in Figure 137, there are two options: either

the top wins, or the bottom wins. Then, starting from each of those

IETs, there are two options: again, either the top or the bottom wins.

And so on! We can work out the entire Rauzy-Veech diagram for all

of the options, which ends up looking like the below “butterfly.” The

right side of the diagram is already done; fill in the grey blanks on

the left side to complete it.

Figure 137. All possible length ratios, recorded in one dia-
gram.

10Thank you, Matheus!
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A short primer on
matrix actions in the
plane

Many of the problems in this book ask you to transform the plane

using the action of 2×2 matrices. If you’re not familiar with this sort

of thing, fear not: the following problems are for you.

An introduction to matrices

A1. Given two vectors [a, b] and [c, d], their dot product is the scalar

value a · c+ b · d. Confirm that [1, 3] • [2, 8] = 26.

A2. A 2 × 2 matrix stores information in rows and columns. When

we multiply two matrices, each entry in the product matrix is the

dot product of the corresponding row of the left matrix and the cor-

responding column of the right matrix. Figure 138 shows how to

compute the four entries of the matrix product [ 1 3
5 7 ] · [ 2 4

8 16 ].

(a)Compute all four entries of this matrix product, and explain how

to see each one as a dot product.

(b)We often want to use a 2× 2 matrix to transform a vector, which

we can think of as a 2×1 matrix. For example, we have already done

all of the work to compute the product [ 1 3
5 7 ] · [ 28 ]. Explain.

183
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Figure 138. How to multiply 2× 2 matrices.

A3. Which are your favorite, rows or columns? Definitely columns.

Check this out:[
1 3

5 7

]
·
[
1

0

]
=

[
1

5

]
and

[
1 3

5 7

]
·
[
0

1

]
=

[
3

7

]
.

Wow, it sure looks like multiplying a 2× 2 matrix by [ 10 ] gives us

the first column of the matrix, and multiplying it by [ 01 ] gives us the

right column. Is this always true? Prove it or find a counterexample.

Terminology: We say that the matrix above “takes [ 10 ] to [ 15 ] and

takes [ 01 ] to [ 37 ].”

A4. Make up a 2 × 2 matrix that takes [ 10 ] to [ 23 ] and takes [ 01 ] to[−1
2

]
. How many different correct answers are there to this problem?

The geometry of matrix transformations

Algebra is fun and all, but it’s time to do some geometry!

A5. Our 2× 2 matrices transform the plane. One way to understand

how a matrix transforms the plane is to apply it to a simple shape and

see what happens. Let’s apply a couple of our favorite transformations

to the “unit square” [0, 1]× [0, 1] shown in Figure 139.

(a)Apply the matrix transformation [ 1 1
0 1 ] to the unit square in Figure

139. To do this, apply the matrix to each of its four vertices [ 00 ], [
1
0 ],
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[ 11 ], and [ 01 ], one at a time, and plot the color-coded image points.

Shade in the resulting polygon that is the image of the square.

Figure 139. Let’s practice transforming points using a ma-

trix.

(b)Repeat the above for the matrix transformation [ 1 0
1 1 ]. Comment

on similarities and differences with the previous part.

(c)Repeat the above for the matrix transformation [ 0 1
1 0 ].

(d)As in Problem 6, we have put an R on our square so that we

can see how it has moved. Use the color-coded vertices to draw the

transformed (possibly stretched-out) image of the R on each of your

image polygons. A transformation that flips the R backwards is called

an orientation-reversing transformation, and otherwise the transfor-

mation is orientation-preserving. For the transformations [ 1 1
0 1 ], [

1 0
1 1 ]

and [ 0 1
1 0 ] used above, which ones preserve, and which ones reverse,

the orientation?

(e) If you did all of your calculations correctly, you should have found

that the red point at the origin is fixed (does not move) under all of

the transformations. Can you explain why?

A6. The inverse of a transformation M is another transformation

M−1 that “un-does” the action of M .
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(a) Looking at your transformed polygon from Problem A5(a), apply

the matrix
[
1 −1
0 1

]
to each of its points, and show that the result is

back to the original square.

(b) Find a matrix that performs the inverse action of [ 1 0
1 1 ].

(c) Find a matrix that performs the inverse action of [ 0 1
1 0 ].

For (b) and (c), make sure to apply your proposed inverse matrix

to your transformed polygon from Problem A5 and check that you

get the original unit square back.

A7. Let’s transform the plane with more exotic transformations.

(a) Sketch the image of the square shown in Figure 140, under the

transformations [ 2 0
0 2 ] and [ 2 1

1 1 ], respectively.
1

Figure 140. Let’s transform a shape that isn’t at the origin.

(b) Find the area of the transformed image of the square under each

of the two transformations. Hint : To find the area of a complicated

shape whose vertices are at lattice points, inscribe the shape in a

lattice rectangle. Then the area of your shape is the area of that

rectangle minus the areas of rectangles and right triangles that are

inside the rectangle but outside of your shape.

1The matrix
[
2 1
1 1

]
is known, for historical reasons, as the cat map.
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A8. For a 2× 2 matrix
[
a b
c d

]
, its determinant is the number ad− bc.

(a)Compute the determinant of each of the matrix transformations

we have studied so far: [ 1 1
0 1 ], [

1 0
1 1 ], [

0 1
1 0 ], [

2 0
0 2 ], and [ 2 1

1 1 ].

(b)The magnitude of the determinant is the area expansion factor of

the associated transformation. Check against your answers to Prob-

lems A5 and A7 that, for the matrices with determinant ±1, the

area of the transformed polygon is the same as that of the original

square, and that for the matrix with determinant 4, the associated

transformation expands the area by a factor of 4.

(c)The sign of the determinant indicates whether the associated

transformation is orientation-preserving (+) or orientation-reversing

(−). Check that for the orientation-preserving transformations, the

associated matrix determinant is positive, and that for the orientation-

reversing transformation it is negative.

A9. Suppose that we want to perform several matrix transformations,

one after another:

(a)Apply the transformation [ 1 0
1 1 ] to (1, 0), and plot the result on

your graph paper.

(b)Now transform the result by [ 2 1
1 1 ].

(c)Now transform the result by
[
1 −1
0 1

]
.

(d)Now transform the result by [ 0 1
1 0 ]. Where do you end up?

(e) Starting with the point (0, 1) on a new picture, perform the same

series of transformations.

(f)There must be a more efficient way to do this, right? Show how to

compute a single 2× 2 matrix that performs all four actions at once.





Appendix B

How to teach a
problem-centered course

I wrote this book for use in a problem-centered, discussion-based

course. For a lot of people, teaching a discussion-based math course

is a new idea. Can I do it? Do I even want to do it?

Yes, and yes!

You will have to give up some things: mostly, control. Students

will solve problems using different methods than you expect, and

they may explain their reasoning differently than you would have.

But by giving up control, you can bring tremendous intellectual vigor

to your class. Students wrestling together on a tough problem, and

then figuring it out, is magic. Give yourself a chance to experience

this magic.

How should the instructor prepare?

Do the problems. Yes, the best way to prepare to teach this class

is simple, though not necessarily easy: do the problems. Everything

that is required for the course is contained in the problems, and subse-

quently in the connections made in your students’ fertile minds. You

do not need to read outside literature to prepare, and your students

do not need you to give expository lectures. I promise!

189
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If possible, it’s nice if you can do all of the problems before the

term starts, or at least be a couple of sections ahead of your students,

just so that you will feel more confident in yourself, and know where

the story is going. You don’t need to tell your students where the

story is going, just as you don’t need to tell your students how to

do the problems, but doing the problems in advance will help you to

feel better about things. Problems that look challenging on a first

read may turn out to be easier than you expected, or perhaps more

difficult. The problems require a lot of drawing pictures, counting,

and doing explicit examples, and you will find that if you actually do

these things, many patterns and insights become clear.

What if you don’t get to all of the problems, or what if there

is (gasp) a problem that you can’t solve? So much the better! You

can actually teach a class like this without knowing the material. I

know it sounds crazy, and I wouldn’t recommend it as a strategy

for every day, but the benefit of the instructor not knowing how to

solve the problems is that you will let the students do the work. How

wonderful it is to see a student explain their solution to a problem

that you couldn’t crack! If there’s a tough problem, and none of the

students were able to solve it yet, let them struggle and work towards

figuring it out. Send them up to the board in partners and have them

work on it together.

It’s a wonderful experience for students to work together on some-

thing challenging, and the payoff from the students learning that they

can solve tough problems is immense. Don’t steal all the fun for your-

self by explaining your solution! I mean it. You want them to rely on

themselves and each other – not on you. Don’t worry! Your students

will solve the problem. Their solution method may surprise you!

Add scaffolding if needed. Some of the problems in the book are

exploratory in nature, and ask students to make conjectures based

on their explorations. For example, Problem 2 asks students to draw

some periodic and aperiodic billiard paths in a circular table, and

then give the probability that the billiard path is periodic. For many

students, this problem is just fine as written. Other students may

need the guidance on how to construct examples given at the end

of that section. In earlier versions of Problem 5, my students did
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not do varied enough examples when I gave them blank disks, so I

edited the problem to the current version, which gives the students

three chosen starting points that illustrate very different behaviors. If

your experience with your own students suggests that they need more

structure for their explorations, or more practice before extending an

idea, you may wish to create additional problems for them.

How do I run the class?

Student preparation. Assign one section of problems (typically five

problems or so) for each night’s homework. Explain to students that

preparation for class is essential, as the work they do for homework

will form the basis for the next day’s discussion. Let them know that

they need to bring a written record of their work on each problem,

as you will check their notebook. Emphasize that they must, at the

very least, draw a picture and write down the given information for

each problem, and make an effort towards a solution.

Assess whether the assignment length seems correct for your stu-

dents: can they complete the homework in a reasonable amount of

time, and can they discuss all of the problems during class time? If

not, adjust the number of problems you assign.

Classroom preparation. Endeavor to set up your space before

class so that students naturally do as much as possible by themselves.

• Choose a classroom with ample board space, ideally lots and

lots of board space, as much as you can possibly get.

• Pre-arrange the furniture in groups, with each group next

to a large board, or more than one large board.

• Check that each board has several different colors of writing

implements and erasers.

• If possible, have a supply of paper, scissors, tape, string, and

so on available every day in a visible location, and encourage

students to use them.

• If you are using more than one group, have a way of ran-

domly assigning groups when the students enter.
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Use of class time. Students should spend class time explaining their

solutions to each other, asking each other questions, pointing out

errors, discussing, and typically coming to some conclusion on each

problem. Depending on your students’ emotional and mathematical

maturity, they may be able to manage their time and discussions on

their own (most college students can do this), or you may need to

direct their discussion and help them make good use of their time

(young high school students often need this).

Use of incentives. We have two basic goals:

(1) Students should work on the problems before class, so that

they are prepared to have substantive discussions, and

(2) students should actively discuss all of the problems within

the class period.

For goal (1), check each student’s notebook each day. This does not

have to be super formal; when you notice that a group is not actively

engaged in something, go around to each student and have them show

you their work. (“Here is where I did problem 32. . . here is problem

33. . . ”) Remind students of the purpose of doing homework, which

is to have something to discuss and to prepare their brains to benefit

from the discussion. Remind students of the standards, which are

to draw a picture and record the information from the problem, and

make an effort towards a solution.

For goal (2), sometimes intellectual curiosity is enough. If not,

the looming specter of an upcoming test may suffice. More gener-

ally, I have had good luck with the following strategy: For a class

that meets Monday, Wednesday and Friday, I collect the students’

homework that was discussed on Monday, Wednesday and Friday on

the following Monday. They have the weekend to make any revisions

from what they brought to class. Collecting their solutions incen-

tivizes the students to discuss in class, because they will want to get

a good score. I would not grade every problem, but only some selec-

tion. I would not collect students’ problem sets at the end of the class

period in which that problem set is discussed, as this leads students

to copy things down without really understanding them.
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Thoughts on group size. It is difficult to facilitate a good discus-

sion among six or more students. This is not to say that it is im-

possible, only that you will have to work hard to do a good job, and

the students must be very willing to participate. Groups of four work

well. If the problems are difficult, increasing the group size makes it

more likely that someone in each group will have solved each problem,

but groups of six or more can be tough, as they tend to break into

two groups of three students each having their own conversation.

One group, full-class discussion. This can work well when your

students are enthusiastic about talking with each other, and with you,

about math. If you are going to do this, here are some tips.

Before class, write the problem numbers on the chalkboard, pos-

sibly breaking up problems with several parts. For example, if the

problems are 3abc, 4, 5abcd, 6abcd, and I have eight students, I would

look at the problems and break them into 3abc, 4, 5a, 5b, 5c, 5d, 6ab,

6c, writing each of these at the top of the board, each with plenty of

space.1 This way, each student has an opportunity and an obligation

to write up something. Arrange your furniture in such a way that

most students have a good view of most of the problems, and can see

the other students. If you have chalkboards all around the room and

you can put everyone around a big seminar table in the middle, that

would be great. If not, just do your best.

As the students enter the room, tell them: “Please choose a home-

work problem and write up your solution.” If there are more students

than problems, have students join another student who is already at

the board. Ditto for any student who finishes writing up their prob-

lem: ask them to join another student at the board. Don’t let anyone

sit down until all of the solutions are up on the boards. The dis-

cussions that happen during this time can be the richest part of the

class for some students! Students also correct their own mistakes, and

other students’ mistakes, when they write their homework solutions

on the board, saving time later. As students are writing up solutions,

take a glance at what students are writing, to make sure that all the

solutions are actually going up, and that students understood what

1I broke them up this way because of their content: I combined all of 3 because
each part is small, and I combined 6a and 6b because 6a does not require explanation.
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the problem was asking. If a student is writing up a solution to the

wrong problem, or if they have some major misunderstanding, try to

nip that in the bud. Focus your efforts on the overarching goal of

having students discuss their ideas with each other, and let this guide

how much you discuss their solutions with them during this time.

After everything is on the boards, everyone sits down. Have the

student(s) who wrote up a solution to the first problem go up to

the board and stand next to it. They should first explain what the

problem was asking, and then explain their whole solution in detail.

You will have to remind them to do these things. The other students

should ask questions during the presentation, and also after. You

will have to remind and encourage them to do this, too. If another

student has something to add, have them go to the board and write it,

or draw a picture, so that everyone can see. You will have to remind

them to do this. It is much easier to talk than to write or draw, but

communicating mathematics works much better through writing or

drawing than through talking. Getting in the habit of writing and

drawing is a skill that you can help your students to build.

Repeat for each of the problems. You will need to carefully man-

age class time, hurrying them along if they are taking too long on one

problem, and ensuring that they spend adequate time on important

problems, to ensure that all problems get explained during class.

Thoughts on assigning students to groups. My students who

took classes in the education department told me that studies have

shown that “visibly random groupings” promote student learning.

Here is how I do it: Let’s say I have 24 students and I am putting

them into six groups of four. Around the room, I write the numbers

1 through 6 at the top of my six chalkboards. I put four chairs in a

semicircle in front of each chalkboard.

I make four little stacks of cards, each containing numbers 1, 2,

3, 4, 5, 6. (If you have five students in each group, you will need two

decks of cards.) I shuffle each stack, and then place the four stacks on

top of each other. This forms a deck of 24 cards, with numbers 1–6 in

random order, four times. I place this deck on the table at the entry

door and stand next to it. As the students enter the room, I say: “flip
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over the next card and look at it.” I have to repeat this instruction

every time. Students will do weird stuff, like peek at the next card

and put it back, or take the card with them. I remind them to flip

the card, look at it, and put it in the discard pile. Whatever number

the student saw, that’s their group. Make sure they go towards the

board with their assigned number, not just towards their friend.

The benefits of this strategy are that the groups fill up at the

same rate, and students know that the groups are random.

If you are only using two groups, you can use colors: have a red

group and a black group instead of using the card’s number.

The first day of class. An important day for setting the tone!

Briefly introduce the course and the syllabus, and then send students

to the board to work on the problems in the first section. The goal

of the first day is to set the tone: the students will do the work. Do

not explain any math! Make them explain it to each other.

After students have solved some problems on the board, go around

and have some groups explain their solutions to the whole class. Smile

and nod. Do not summarize, point out interesting things, or say any

of the dozens of essential thoughts that you feel you must share. This

is the students’ job! Ditto for the second class.

Keep quiet as much as you possibly can for at least the first three

classes. This sets the tone that the students must discuss. If you work

hard to keep quiet for the first three classes, the payoff will be great,

as your class is likely to have engaging discussions for the rest of the

term. They will miss learning from the brilliant comments that you

would have shared in the first three days, but in the long run, they

will learn much more, as they will get in the habit of having fruitful

conversations with each other.

The second day of class. Randomly assign students to groups, and

make sure they go to the right place.

Explain to your students that the goal of class time is for students

to leave the room understanding each of the problems, and that they

should use class time to make that happen. Explain that students

are welcome to use the chalkboards, paper, scissors – whatever they
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need to explore and solve the problems. Let students know that you

are available to help them, but that they should ask each other before

asking you. Then – start them discussing!

During class, sit calmly in a place where you can see and hear the

students. Keep a neutral expression. Listen, watch, but do not react.

Look for moments when students are grappling with hard questions,

and observe what they do.

Role of the instructor during class time. Encourage students to

use the chalkboards, rather than writing on their paper and showing

each other. This way, all students can see, and all students can refer

to or correct the work. Also, my students have told me that research

shows that use of impermanent vertical surfaces promotes learning!

Be available to students by sitting there watching them, but do

not jump in. Let them make mistakes and have great ideas.

If you hear a student wondering something and you think that

objects might help, grab paper and scissors (or whatever they need)

and deliver them to the group.

Watch what students write on the boards, and listen to what

they discuss. Make a mental note when they write an error or say

something wrong, but do not jump in unless they have truly moved

on: I have found that 90% of the time, within 10 minutes they find

and correct their own errors. Magical!

If a group calls you over to ask about something, answer them

directly; do not try to give them hints to guide them towards your

own way of thinking. Consider this: each student in the group tried

to solve the problem for homework, and then as a group, they tried to

solve it together. That’s plenty of thinking time towards this problem.

So I ask you not to try to socratically lead them towards your own

solution. If you want to give them your solution, give it to them!

If it is nearing the end of class and most groups are stuck on a

problem that only one group has solved, let that group know that

you’d like them to present to the whole class, so that they can pre-

pare a good diagram and think about their explanation. Then get

everyone’s attention, and have the whole class listen as that group

presents their solution.
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Troubleshooting if your students are not talking. This may be

because you talked too much on the first day of class. Still, here we

are, and we must solve this problem. Here are some strategies:

• Make sure that you are checking students’ homework. If no

one is talking, it is typically because no one has thought

about the homework.

• Make your groups smaller. Five students or fewer is ideal.

Reduce the group size to two or three until they learn to

talk with each other.

• Give each student four pennies. Each time they speak, they

must toss a penny on the floor. When they have spent all

their pennies, they cannot speak anymore. Now the students

who were not speaking are forced to fill the silence. This

game does not make for good discussions on the day you

play it, but it gets students thinking about their speaking,

and can help with subsequent days.

• Use non-random groupings for one day: put the loudest stu-

dents together in one group, and the quietest students to-

gether in another group. Leave the quietest students there

and don’t talk to them. They will be happy together, and

eventually they will start to talk about math.

• Tell each group that for today only, their job is get a com-

plete, correct solution to every problem on the board by

the middle of class. Then you will have someone from each

group explain each solution to you, and it will not be the

person who wrote up the solution. Because they are afraid

of explaining something that they don’t understand or that

is incorrect, this strategy is magical for getting students to

ask each other questions.

• Send students to the board in partners to work on a new

problem. Groups of two facilitate discussion because no one

can hide.

What if students don’t finish discussing all the problems

before the end of class? Reflect on whether you believe that your

assignment is really the correct length. If so, it’s a matter of getting
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everyone to be more efficient. If students are working in small groups,

remind them that their job is to leave class with a correct solution to

each problem, and that they need to manage their time to make this

happen. If you are leading a full-class discussion, time management

is your job. You will have to decide which problems are worth taking

lots of time to discuss, and which ones deserve only a cursory glance.

If you decide that your assignments are actually too long, reduce

the number of problems you assign each night.

What if students finish early and there is extra time? Send

them to the board in partners to work on a new problem, an artfully

chosen problem from the following section. I typically just start them

on the most difficult problem. Other options are a problem in which it

is difficult to know where to start (so they can figure it out together),

a problem in which there is a big paragraph of text to read and

interpret (to make it more likely that they will actually do it), or a

problem in which they have to work out some examples (because the

other person may think to work out examples different from yours).

———

I would love to hear from you about this curriculum, or this

teaching method. Please reach out and tell me how it’s going! I love

to hear that people have used my materials, and I’d love to know

about your experience.

– Diana

Figure 141. Me with my beloved billiards curriculum.
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Hints for selected
problems

As discussed in the Preface on page xiv, the aim of this book is to give

you lots of experience working on problems in billiards and related

areas, to gradually build up your understanding. Each problem builds

on your previous experiences. The map in Figures 144–145 on the

next pages suggests how the problems depend on each other: an arrow

points from A −→ B if problem A prepares you to do problem B.

If you are having trouble solving Problem 122 about the eier-

legende Wollmilchsau and you need a hint, try this:

(1) Find the problem number on the map: ah yes, there it is in

green, on the right page in Figure 145, along the left edge,

in the middle, in that eierlegende Wollmilchsau shape.

(2) Look at which problem numbers point towards the problem:

89, 113, 116, and 121 (also see Figure 142).

(3) Go back and look over your work for each of those four

problems. If you couldn’t solve one of them, now is the

time to do it! Re-do those problems to make sure you fully

understand how they work. Look at which problems point

towards those problems, and review them, too.

(4) Now go try Problem 122 again!
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Figure 142. If you want to do Problem 146, do the five prob-
lems in the lower left part of the picture. If you want to do

Problem 122, doing all of the problems that point towards it

will prepare you for that noble quest.

If you are just dipping into this book to learn a few new ideas,

the problem map can help you figure out which problems to do. For

example, if your advisor wants you to understand how to suspend

an interval exchange transformation into a translation surface, you’ll

want to do Problem 146. Do you need to work every problem from

1 to 146, to be able to do it? No! Just find #146 on the map in

Figure 144: there it is, in purple, near the bottom of the left page.

Problem 115 is pointing towards 146, so you’ll need to do that one,

and Problems 92, 95 and 97 point towards 115 – and that’s it. So to

understand suspensions, you just need to do those five problems (see

the lower left corner of Figure 142).

You can also use the problem map to decide which problems to

omit (Figure 143). For example, if you decide that you want to skip

Problem #67 about the Euler characteristic, find it in the middle of

the left page in Figure 144, and then use the map to determine that

you should consider skipping Problems 68, 69, 94, 143, and 151 as

well. Once you’ve skipped Problem 143, you will lack a bit of the

background for 167–170, so proceed with caution!
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Figure 143. If you skip #67, you may lack the tools for
success in these subsequent problems.

This section is called “Hints for selected problems” because not

every problem has an arrow pointing towards it. Problems 1–6 and 8

each introduce an idea for the first time, as do Problems 74, 92, 105,

119, 140, 153, and 162. For these, read the problem carefully, make

a large diagram, and ask a classmate if you need a hint.

Problem 89 is the only pure matrix algebra problem in the book.

Problem 157 just asks you to watch a video. No hints here!

Otherwise, every problem builds on the experience of some other

problem. I hope that looking at the map on the next two pages

inspires you about the inter-relatedness of the ideas in this book,

and maybe even about the inter-relatedness of mathematics more

generally.
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Figure 144. In this nifty diagram, an arrow points from
A −→ B if problem A prepares you to do problem B. It shows
how each problem builds on your experiences from doing ear-
lier problems, and how it prepares you for future problems. . .
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Figure 145. . . . and it continues on this page. Problems are
color-coded by topic, as indicated. Some problems have special
symbols, which suggest their topic. Hands are for hands-on
problems; stars are for “synthesis” problems.





Bibliography

[1] Pierre Arnoux, Un exemple de semi-conjugaison entre un échange d’intervalles
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[15] Diana Davis and Samuel Lelièvre, Periodic paths on the pentagon, double penta-
gon and golden L, Israel Journal of Mathematics (2025).

[16] Diana Davis, Irene Pasquinelli, and Corinna Ulcigrai, Cutting sequences on
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Glossary of key terms

angle around a vertex: The total turning angle required to circle

around a vertex and return to the initial point. For a flat surface, the

angle around every vertex must be a multiple of 2π. Figure 146 shows

that for the regular octagon surface, the angle around its vertex is 6π.

See Problem 75.

Figure 146. The regular octagon surface has just one vertex,

and as you can see from following the arrows in the numbered
order, the angle around it is 8 · 3π

4
= 6π.

aperiodic trajectory: A trajectory that is not periodic. For exam-

ple, a trajectory with an irrational slope on the square billiard table

or square torus is aperiodic. See Problem 2.

211



212 Glossary of key terms

automorphism: An action that takes a surface back to itself, cre-

ating neither holes nor overlaps, and preserving the surface’s struc-

ture. The slogan for an automorphism is “nearby points go to nearby

points.” In Figure 147, imagine that you have a loop of bread dough

with a ribbon of cinnamon swirl around its equator (left). Now imag-

ine breaking the dough apart, giving it a full twist (center), and stick-

ing it back together (right). The cinnamon loop now passes through

the central hole. This action is an automorphism, of both the solid

dough loop and of its surface, the torus. Some other examples of au-

tomorphisms of the torus are reflections and rotations. See Problem

27.

Figure 147. A single full twist is an automorphism of the

torus, since nearby points go to nearby points.

cone point: A point of a translation surface such that the angle

around it is not 2π. Figure 146 shows that the regular octagon surface

has a single cone point, whose angle is 8 · 3π
4 = 6π. See Problem 76.

continued fraction: A way of expressing a number as a (possibly

infinite) nested fraction. For example, the continued fraction repre-

sentation of 27/7 is

27

7
= 3 +

1

1 +
1

6

which we can express succinctly as [3; 1, 6], the semicolon indicating

that the initial “3” is outside of the fraction. See Problem 8.

cut and paste equivalence: Two surfaces are cut and paste equiva-

lent if it is possible to cut up and reassemble one into the other, while

respecting the edge identifications. Figure 148 shows two examples

of pairs of surfaces that are cut and paste equivalent. The left pic-

ture shows that it is possible to cut and paste a hexagon surface into

a parallelogram surface; the colored edges show that the reassembly
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respects the edge identifications. The right picture shows two paral-

lelogram surfaces that are evidently cut and paste equivalent, because

we have simply swapped the positions of the red and blue triangles,

again respecting the edge identifications. We might think of such sur-

faces as being different, or as being the same, depending on what we

care about. See Problems 51 and 153.

Figure 148. Two examples of pairs of surfaces that are cut

and paste equivalent.

cutting sequence: The bi-infinite sequence of edges (or edge labels)

that a trajectory passes through. Figure 149 gives an example on the

double pentagon surface. See Problem 3.

Figure 149. A periodic trajectory on the double penta-

gon. Starting at the indicated point, its cutting sequence is

21234543212345432123.
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cylinder: The union of a maximal family of trajectories on a trans-

lation surface that all have the same dynamics. Figure 150 shows a

decomposition of the golden L surface into red and blue cylinders. See

Problem 99.

Figure 150. A cylinder decomposition of the golden L in the
direction of slope ϕ ≈ 1.618.

ergodic: A flow in a space X is ergodic if for any point p in X and

for any subset S of X, the amount of the orbit of p that lies in S

is proportional to the size of S. Figure 151 shows two long billiard

paths on the regular pentagon billiard table. The trajectory on the

left appears to exhibit roughly ergodic behavior, as it spends about

the same amount of time everywhere, while the trajectory on the right

definitely does not, as it visits some parts of the table more often than

others, and misses the top left corner completely. See # 28.

Figure 151. Two long billiard paths, one that fills up the

billiard table roughly evenly, and one that definitely does not.
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flat surface: A surface that is locally like the flat plane everywhere,

except possibly at finitely many cone points, where the angle around

each cone point is a multiple of 2π. In this book, the flat surfaces

we study are all translation surfaces. Problem 77 asks you to say

whether every flat surface is a translation surface; we won’t give away

the answer here. See # 4.

genus: When considered as the surface of e.g. a bagel, this is how

many “holes” the surface has (Figure 152). See Problem 68.

Figure 152. This happy surface has genus 3.

inner billiards: A dynamical system where a point moves linearly

inside a domain, and when it hits the boundary of the domain, the

angle of incidence between the inbound path and the boundary (or its

tangent line) is equal to the angle of reflection between the outbound

path and the boundary (Figure 153). See Problem 1.

Figure 153. Inner billiards in a table with linear and curved

edges.
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interval exchange transformation: A dynamical system where

the unit interval is cut into pieces that are rearranged, and then glued

back together and cut up and rearranged in the same way again. This

process is repeated forever. Figure 154 shows a detailed example of

the orbit of one point on a 4-IET. See Problem 95.

Figure 154. In the box at the top of the picture is a 4-IET.
The middle part of the picture shows the orbit of one point,

as it flows up within the IET, and then shifts over to its
new location. The box at the bottom of the picture shows a
summary: the first five iterations of this point’s orbit. Where

should you plot the sixth iterate?



Glossary of key terms 217

oppositely oriented: Parallel edges are oppositely oriented if, roughly

speaking, the surface lies on the left side of one of the edges and on

the right side of the other.

For example, in Figure 155, the parallel edges A are oppositely

oriented, because if you and your friend each lie on one of the copies

with your heads pointing in the same direction (e.g., to the left), one

of you has your right arm over the surface (top) and the other has

their left arm over the surface (bottom). On the other hand, the

parallel edges B are not oppositely oriented, because if you and your

friend each lie on one of the copies with your heads pointing in the

same direction (e.g., up), both of you have your right arm over the

surface. See Problem 57.

Figure 155. In this surface, parallel edges A are oppositely
oriented, while parallel edges B are not. You can determine

this by having people lie on the edges with an arm over the
surface, as shown.

orbit: The set of images of an input point under repeated applica-

tions of a transformation. Figures 154 and 156 each show the first

five steps of an orbit, for an interval exchange transformation and for

an outer billiard map, respectively. See Problem 98.
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outer billiards: A dynamical system where a point moves outside of

a domain, reflecting through tangent lines to the domain, or through

vertices of a polygonal domain. See Problem 5.

Figure 156. An example of an outer billiard table with both
linear and curved edges, and the first five steps of the orbit of

a point under the counter-clockwise outer billiard map.

periodic trajectory: A trajectory is periodic if returns to its start-

ing point and repeats its path (Figure 157). See Problem 3.

Figure 157. Three examples of periodic billiard paths on the

regular pentagon.
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saddle connection: A line segment connecting two vertices of a

translation surface, with no vertices on its interior (Figure 158). A

saddle connection may pass through more than one polygon. See

Problem 99.

Figure 158. Three saddle connections on the golden L, in

the direction of slope ϕ. Notice that these saddle connections

bound the cylinders of Figure 150.

shear: For 2× 2 matrices, a horizontal shear is a matrix of the form

[ 1 m
0 1 ] and a vertical shear is a matrix of the form [ 1 0

m 1 ], for a real

number m. See Problems A5 and 110.

stratum: Translation surfaces are divided into strata based on the

angle at each cone point. For a translation surface, the angle at

each cone point is a multiple of 2π. For each one, count the extra

multiples of 2π, and list these in descending order. Figure 159 shows

cartoon versions of some the surfaces we study in this book, divided

by stratum. See Problem 87.

Figure 159. Some of our favorite surfaces, by stratum.
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tiling billiards: A dynamical system where a point moves linearly

through a tiling of the plane, except that when it hits an edge of the

tiling, the angle of incidence between the inbound path and the edge

(or its tangent line) is equal to the angle of reflection between the

outbound path and the edge (Figure 160).

This system was motivated by the existence of materials with a

negative index of refraction, the idea being that one would construct

a two-colorable tiling, with the colors corresponding to materials with

opposite indices of refraction. We do not require the tiling to be two-

colorable, but it so happens that all of the tilings considered in this

book are actually two-colorable. See Problem 74.

Figure 160. A tiling billiards trajectory on a planar tiling.

We can think of the blue and red tiles as being made from ma-

terials that have opposite indices of refraction. At each edge
crossing, the angle of incidence equals the angle of reflection.

translation surface: A flat surface created from a polygon or col-

lection of polygons by identifying oppositely-oriented parallel edges of

the same length. To identify edges means to glue them together and

make them into the same edge, as though you are taping together a

large banner out of many small pieces of printer paper.

For the golden L surface, Figure 161 shows a way to visualize

identifying the green and blue pairs of parallel edges. First, you curve
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the surface in space, and then bring the pairs of green edges together,

and the pairs of blue edges together. It remains to do the same for

the red and yellow pairs of edges. See Problem 57.

Figure 161. This picture shows how to identify the green and
blue pairs of edges of the golden L translation surface. The

effect is to roll the surface up into a kind of tube. After further

identifying the red and yellow edges, what do you expect the
genus of the surface to be?

unfolding: A technique for transforming an inner billiard trajectory

into a line on the plane or a trajectory on a flat surface. Sometimes

called the Zemylakov–Katok construction. The idea is to double the

billiard table, imagine that the two copies are joined along the edge

of the bounce, and then unfold the second copy like a piece of paper

(Figure 162). See Problem 7.

Figure 162. (left) One bounce of a billiard trajectory that
we (middle) unfold into (right) a linear trajectory in the plane.
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Hamenstädt, Ursula, 116

Harriss, Edmund, 159

Hart, George, 36

Harvey, Reese, 130

Hassett, Brendan, 130

Herrlich, Frank, 123

Hooper, Pat, 100, 101, 150,

167, 173

Hubert, Pascal, 104, 144, 168

Hyeon, Donghoon, 130

Ito, Shunji, 172

Iyer, Sumun, 74, 103

Jones, Frank, 130

Kamae, Hiroko, 172

Kamae, Teturo, 172

Kleinbock, Dmitry, 161

Knox, Katherine, 59

Kushnick, Hannah, xviii

Lamb, Evelyn, 125

Lanier, Justin, 137

Lanneau, Erwan, 150

Ledrappier, François, 161
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Gabriela, 123

Whitfield, Brandis, 49

Whitney, Glen, 66

Wiandt, Tamas, 130

Wilkinson, Amie, 18, 55

Wolecki, Amit, 115

Wright, Alex, 80, 153

Xue, Jinxin, 18

Yaman, Aslı, 144

Yoccoz, Jean-Christophe, 92


	They did the math
	Preface
	Acknowledgements
	Chapter 1. Introduction to billiards in many forms
	1. What are periodic paths and where can we find them?
	2. We billiard outside of the box
	3. We unfold
	4. We learn to draw accurate pictures
	5. We do a little bit of group theory
	6. We fold up torus trajectories into billiards
	7. Automorphisms come for the torus
	8. Hands-on activities for Chapter 1

	Chapter 2. Trajectories, automorphisms, and continued fractions
	9. We apply symmetries to trajectories
	10. We dream of an action on cutting sequences
	11. The dream comes true
	12. We consolidate our gains
	13. A grand unifying theory emerges
	14. We expand from familiar friends to new examples
	15. We figure out how to ignore trajectories completely
	16. Hands-on activities for Chapter 2

	Chapter 3. Periodicity everywhere
	17. We meet tiling billiards
	18. Earlier, we unfolded; now, we fold
	19. We meet the biggest open problem in billiards
	20. Families of parallel trajectories
	21. Interval exchange transformations
	22. We do some computer experiments
	23. Hands-on activities for Chapter 3

	Chapter 4. Cylinders and automorphisms
	24. Twisted cylinders
	25. Let's get illuminated!
	26. The tree of periodic directions
	27. We finally meet Veech
	28. The modulus miracle
	29. The slit torus construction
	30. The space of triangles
	31. We get a little bit wild
	32. Moving around in the space of surfaces

	Chapter 5. Further topics and tools
	33. The modular group
	34. Renormalization
	35. We find the Rauzy fractal in tiling billiards
	36. The Arnoux-Yoccoz IET and arithmetic graphs
	37. Transition diagrams
	38. Rauzy-Veech induction

	Appendix A. A short primer on matrix actions in the plane
	An introduction to matrices
	The geometry of matrix transformations

	Appendix B. How to teach a problem-centered course
	How should the instructor prepare?
	How do I run the class?

	Image credits
	Hints for selected problems
	Bibliography
	Glossary of key terms
	Index of terms
	Index of people

