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Real Analysis

Discussion Skills

1. Contribute to the class every day

2. Speak to classmates, not to the instructor

3. Put up a difficult problem, even if not correct

4. Use other students’ names

5. Ask questions

6. Answer other students’ questions

7. Suggest an alternate solution method

8. Draw a picture

9. Connect to a similar problem

10. Summarize the discussion of a problem
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Real Analysis

The problems in this text

The method of instruction used with these problems is based on the curriculum at Phillips
Exeter Academy, a private high school in Exeter, NH. Most of the beginning of the course
(and some of the later) is based on Real Analysis by Frank Morgan (FM). Most of the
end of the course (and some of the earlier) is based on Aimee Johnson’s lecture notes and
worksheets, which in turn are based on Introduction to Analysis by Maxwell Rosenlicht
(MR). The rest of the problems were written by Diana Davis (DD) specifically for this
course. If you create your own text using these problems, please give credit as I am doing
here, and note who wrote each problem, as I have done in the left margin.

About the course

This course meets 7 times every two weeks, with one long block (70 minutes) and one short
block (40 minutes) each week, plus either one or two regular blocks (50 minutes). The
homework for each class is 75 minutes, except that there is no homework for the short
blocks. There are occasional tests.

To the Student

Contents: As you work through this book, you will discover that the various topics of real
analysis have been integrated into a mathematical whole. There is no Chapter 5, nor is there
a section on sequences of functions. The curriculum is problem-centered, rather than topic-
centered. Techniques and theorems will become apparent as you work through the problems,
and you will need to keep appropriate notes for your records — there are no boxes containing
important ideas. Key words are defined in the problems, where they appear italicized.

Your homework: The first day of class, we will work on the problems on page 1, and your
homework is page 2 (possibly 2a and 2b); on the second day of class, we will discuss the
problems on page 2, and your homework will be page 3 (possibly 3a and 3b), and so on for
each day of the semester. You should plan to spend 75 minutes solving problems for each
class meeting.

Comments on problem-solving: You should approach each problem as an exploration.
Draw a picture whenever appropriate. It is important that you work on each problem
when assigned, since the questions you may have about a problem will likely motivate class
discussion the next day. Problem-solving requires persistence as much as it requires ingenuity.
When you get stuck, or solve a problem incorrectly, back up and start over. Keep in mind
that you’re probably not the only one who is stuck, and that may even include your teacher.
If you have taken the time to think about a problem, you should bring to class a written
record of your efforts, not just a blank space in your notebook. The methods that you use
to solve a problem, the corrections that you make in your approach, the means by which
you test the validity of your solutions, and your ability to communicate ideas are just as
important as getting the correct answer.
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Below is a map of the ideas in this course, and how they connect, from the basic ideas at the
bottom to the course goals at the top. An arrow goes from A to B if we need the ideas from
A in order to understand B. I made this chart when I was constructing our curriculum.

• Circle topics that you feel you understand well.

• Periodically come back to this chart and circle topics as you master them.
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Real Analysis

in class

Notation.sets / FM

• A set is a notion that we won’t define, because any definition would end up using
a word like “collection,” which we’d then need to define. We’ll just assume that we
understand what is meant by a set, and let this notion of a set be fundamental.

• We use a capital letter to denote a set, e.g. “Let S be the set of even numbers.”

• The symbol ∈ means “is/be an element of,” and /∈ means “is not an element of.”

• We use a lower-case letter to denote an element of a set, e.g. “Let s ∈ S.”

• To describe the elements of a set, use curly braces {}. For example, S = {. . . ,−4,−2, 0, 2, 4, . . .}
or S = {x : x is an even number}. The colon “:” means “such that,” so that the latter
set is read aloud as “S is the set of x such that x is an even number.”

Note that the statement S = {x : ∃n ∈ Z : x = 2n} is equivalent to, but more obfuscating
than, both definitions for S given above. Be kind to your reader as much as possible

sets / DD 1. Let A = {1, 2, 3, 4}. Which of the following are true statements?

(a) 3 ∈ A (b) {3} ∈ A (c) 5 ∈ A (d) 2 ∈ a (e) 2 /∈ A

Talking about sets.sets / FM

• X ⊂ Y is read “X is a subset of Y ,” and means that every x in X is also in Y :

x ∈ X =⇒ x ∈ Y.

• An equivalent notation to X ⊂ Y is X ⊆ Y . If one wants to specify that X 6= Y , one
can write X ( Y . Otherwise, X ⊂ Y allows for the possibility that X = Y .

sets / DD 2. Let S and A be as above, and let B = {1, 2, 3, 4, 5, 6}. Which are true? Explain.

(a) A ⊂ B (b) B ⊂ A (c) A ∈ B (d) A ⊂ S (e) S ⊂ A

Useful sets.sets / FM

• The empty set ø, the set consisting of no elements.

• The natural numbers N = {1, 2, 3, . . .}. In Europe, N starts with 0.

• The integers Z = {−3,−2,−1,−0, 1, 2, 3, . . .}, from the German zahl for number.

• The rationals Q = {p/q in lowest terms : p ∈ Z, q ∈ N}, from quotient
= {repeating or terminating decimals}.

• The reals R = {all decimals}, with the understanding that 0.999 . . . = 1, etc.

Note that these symbols are typeset as N,Z,Q,R and written by hand as N,Z,Q,R.

sets / DD 3. Let A, B and S be as above. Which of the following are true? Explain.

(a) B ⊂ N (b) S ⊂ Z (c) Q ⊂ R (d) Z ⊂ N (e) ø ⊂ N (f) ø ∈ A
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The mathematical “or.” In mathematics, “or” means one, or the other, or both.

• Shall we meet to do Real Analysis on Monday or Thursday? Both!

• To satisfy PEA’s math requirement, a student must have passed a course numbered
330 or above.

logic / FM Implication. There are many ways to say that one statement A implies another statement
B. The following all mean exactly the same thing:

• If A, then B.

• A implies B (written A =⇒ B).

• A only if B.

• B if A (written B ⇐= A).

• not B implies not A. (This is the contrapositive)

logic / DD 4. Let statement A be “Max has a valid driver’s license in New Hampshire,” and let state-
ment B be “Max is over age 16.”

(a) Write out the five implications above, using these statements.

(b) Considering this example, do you agree that they are all logically equivalent?

(c) The converse is B =⇒ A. Is the converse true in this case?

Working with sets.sets / FM

• The intersection X ∩ Y of two sets X and Y is the set of all elements that are in X
and in Y : X ∩ Y = {x : x ∈ X and x ∈ Y }.

• The union X ∪ Y of two sets X and Y is the set of all elements that are in X or in
Y : X ∪ Y = {x : x ∈ X or x ∈ Y }.

• The complement XC of a set X is the set of points not in X: XC = {x : x /∈ X}. For
this to make sense, the “universal set” that X lives in must be understood.

• The set X − Y , or X \ Y , is the set of all points in X that are not in Y .

sets / DD 5. Shade the regions corresponding to X ∩ Y , X ∪ Y , XC , and X − Y , respectively.

sets / FM 6. Let X be a subset of a universal set U , and let X and Y be subsets of U . Simplify:

(a) (X ∪ Y ) ∩ (U −X) ∩X (b) X ∪ (Y ∩XC) (c) (X ∩ Y ) ∪ (X ∩ Y C)
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Converse and logical equivalence. The converse of the statement “A implies B” is thelogic / FM

statement “B implies A.” If a statement and its converse are both true, we say A and B
are logically equivalent, or in other words A⇐⇒ B, or in other words “A if and only if B,”
sometimes abbreviated as “A iff B.”

logic / DD 1. Let statement A be “Alex is eligible to vote in the United
States” and let statement B be “Alex is a United States citi-
zen.” Write out the implication A =⇒ B, its contrapositive,
and its converse. Which of these implications are true?

logic / DD 2. The lyrics to “This is why I’m hot” by Mims are shown
to the right. Does the lyric “I’m hot ’cause I’m fly, you ain’t
’cause you not” imply that the notions of “hot” and “fly” are
logically equivalent?

Metrics. A metric on a set E is a rule that assigns, to each pair p, q ∈ E, a real numbermetric / DD

d(p, q), called the distance function, which is a function d : E × E → R, such that:

1. d(p, q) ≥ 0 for all p, q ∈ E,

2. d(p, q) = 0 if and only if p = q, NOTE: There are two statements here.

3. d(p, q) = d(q, p), (symmetry)

4. d(p, r) + d(r, q) ≥ d(p, q) for any p, q, r ∈ E. (the triangle inequality)

metric / DD 3. Show that each of the following is a metric on R2:

(a) The standard Euclidean metric (i.e. using the Pythagorean theorem),

(b) The “Taxicab metric”: d((a, b), (c, d)) = |c− a|+ |d− b| (also explain the name).

limits / FM
4. Consider the following sequences: 1, 1/2, 1/3, 1/4, 1/5, . . . 3, 1, 4, 1, 5, 9, . . .

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, . . . 2.1, 2.01, 2.001, 2.0001, . . .

(a) Which of the sequences converge, and to what limit?

(b) Come up with a definition: a sequence converges to a limit p if. . .

(Don’t look it up; you’ll work with the precise definition in your homework. The purpose of
this problem is to try to define it, and to see that writing definitions is tricky.)

sets / FM
5. (if time) Find infinitely many nonempty sets S1, S2, . . . of natural numbers such that

N ⊃ S1 ⊃ S2 ⊃ S3 · · ·

and
∞⋂
n=1

Sn = ø. Here the symbol
∞⋂
n=1

Sn means S1 ∩ S2 ∩ · · · , and is used to take the

intersection of infinitely many sets.
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Metric spaces. A metric space is a set E, together with a metric d(p, q) that gives the
distance between any two points p, q ∈ E.

metric / FM 1. Show that the following are metric spaces:

(a) The set Rn, with the metric

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max{|y1 − x1|, . . . , |yn − xn|}.

(b) Any set E, with the discrete metric d(x, y) =

{
0 if x = y

1 if x 6= y
for x, y ∈ E.

Limits and convergence. Let p1, p2, . . . be a sequence of points in a metric space E.

• A point p ∈ E is a limit of {pi}∞i=1 if, for any ε > 0, there exists N > 0 such that,
whenever i > N , d(p, pi) < ε.

• In such a situation, we say that the sequence pi converges to p, and write lim
i→∞

pi = p.

limits / DD 2. I like to think of sequence convergence as a competition between me and an interlocutor:

ME: Consider -1, +1/2, -1/3, +1/4, -1/5, . . . . I claim that this sequence converges to 0.

INTERLOCUTOR: Nonsense! Show me that the terms get within 0.1 of 0.

ME: Okay, take k > 10. After that, the terms are all closer than 0.1.

INTERLOCUTOR: Hmm! Now show me that the terms get within 0.0001 of 0.

ME: Okay, then take k > 10000. After that, the terms are all closer than 0.0001.

INTERLOCUTOR: Hmm. Show me that, for any ε > 0 that I might ever suggest, the
terms get within ε of 0.

ME: Okay, take k > , and after that the terms are all closer than ε.

limits / DD 3. Prove, from the definition (i.e. by finding an N that depends on the given ε, sometimes
called N(ε) to emphasize this dependence), that the sequence pn = 1000/n3 converges to 0.

Open balls. Given a metric space E, a point p0 ∈ E, and a real number r > 0, the open
ball in E with center p0 and radius r is Br(p0) = {p ∈ E : d(p0, p) < r}.

open / DD 4. Sketch the following open balls.

(a) In R, the set B1(0). (Shade the included interval, with open circles for endpoints.)

(b) In R2, the set B1/2(1, 1). (Shade the included region, with a dashed boundary curve.)

open / DD 5. Express the open interval (1, 2) ∈ R as an open ball as above. Then do the same for the
general open interval (a, b).
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Functions.func / FM

• A function from X to Y is a rule that assigns, to each x ∈ X, exactly one y ∈ Y .

• We write f : X → Y , and if f(x) = y, we write x 7→ y which is read “x maps to y.”

• If f maps distinct points to distinct values, then f is called one-to-one or injective.
Equivalently, f is injective if f(x) = f(y) implies that x = y.

• X is called the domain of f , and Y is the codomain of f .

• The set of all outputs f(X) = {f(x) : x ∈ X} is called the image of f . If the image is
the entire codomain, f is called onto or surjective. Equivalently, f is surjective if, for
each y ∈ Y , there exists an x ∈ X such that f(x) = y.

• A function that is both injective and surjective is called bijective.

func / FM
6. For each of the following, say whether it is injective, surjective, or both (bijective):

(a) f(x) = −x (b) f(x) = x2 (c) f(x) = sinx (d) f(x) = ex (e) f(x) = x3 + x2.

True and false. An implication A =⇒ B is true if B is true, or if A is false (in which caselogic / FM

we say that the implication is “vacuously true.”) For example, the statement “If 5 is even,
then 15 is prime” is vacuously true. An implication is false only if A is true and B is false.

logic / FM 7. Is the statement:
If x ∈ Q, then x2 ∈ N

true or false for the following values of x? Justify your answers.

(a) x = 1/2 (b) x = 2 (c) x =
√

2 (d) x = 4
√

2

logic / DD 8. Vacuously true statements can be used to make hilarious jokes, with other people who
also understand vacuously true statements. Ruin each of the following hilarious jokes by
writing each one in the form if A, then B:

• Every car I own is a Maserati.

• I’ve gotten As in all of my Sanskrit courses.

• Swarthmore Football, undefeated since 2000.
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Infinite sets. A set is countable if its elements can be listed.
More precisely, a set is countable if it is finite, or if its elements can be put in one-to-one
correspondence with the natural numbers. Otherwise, the set is called uncountable.

count / DD 1. Show that the set of even natural numbers is countable, by:

(a) Showing how to systematically list them;

(b) Explicitly constructing a bijective function from N to the even numbers.

count / DD 2. Write a proof that the even numbers are countable, using your function from 1(b). The
purpose of this problem is to practice constructing a clear, rigorous proof. Do this by filling
in the following. In your notebook, write down the entire proof, not just the blanks.

Proof. We will show that .

We will do this by constructing ,

and showing that it .

Let N be the set of natural numbers, and let S be the set of even numbers.

Define f : N→ S by f(x) = for each x ∈ N.

First, we will show that f is injective. Suppose that f(x) = f(y). Then

, so x = y, as desired.

Now, we will show that f is surjective. Let x ∈ S. Then

, so x = f(n) for some n ∈ N, as desired.

Thus f is injective and surjective, so f is bijective, so there is a bijective function from N to
the even numbers, so , as desired.

count / DD 3. This result seems to be a contradiction: the set of even numbers seems to be a smaller
set than N (half as big!), and yet the two sets have the same size. Explain.

Open sets. A set is open if there is an open ball around every point.
More precisely, a subset S of a metric space E is open if, for each p ∈ S, there exists an
r > 0 such that Br(p) ⊂ S.

open / DD 4. Prove that the empty set is open.

open / DD 5. Let S ⊂ R be defined by S = [0,∞). Show that S is not an open set. Hint : find a point
in S about which there is no open ball that is completely contained in S.

open / DD 6. Prove that, for any metric space E, the entire space E is an open set.

open / DD 7. Let E = [0,∞). Prove that, in E, E is open.
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count / DD 1. Show that the integers Z are countable.

seq / DD 2. For each of the following sequences, say whether it converges or diverges. For those that
converge, prove that it converges by finding the limit p and also, given any ε > 0, an N(ε).

(a) an = sinn
n

(b) bn = 1 + (−1)n (c) 1, 0, 1/2, 0, 1/4, 0, 1/8, 0, . . .

Precise notions to bound sets. Let A be a nonempty set of real numbers.

• A real number u is an upper bound for A if a ≤ u for all a ∈ A.

• A real number l is a lower bound for A if l ≤ a for all a ∈ A.

• A set is bounded if it has both an upper and a lower bound.

• A real number s is the supremum (“soo-PREE-mum”) or least upper bound of A if s
is an upper bound for A, and s ≤ u for any other upper bound u of A. The supremum
is denoted sup(A), pronounced “soup A,” or l.u.b.(A).

• A real number t is the infimum (“in-FEE-mum”) or greatest lower bound of A if t is
a lower bound for A, and l ≤ t for any other upper bound l of A. The infimum is
denoted inf(A) or g.l.b.(A).

• A real number m is the maximum of A if m ∈ A and a ≤ m for all a ∈ A.

• A real number n is the minimum of A if n ∈ A and n ≤ a for all a ∈ A.

Note that, if you are just trying to show that a set is bounded, a super big bound like 1000
works just as well as a bound like 1. There is no need to do extra work to find a tight bound.

bound / AJ 3. Complete the following table by filling in each box with a number, the letters DNE for
“does not exist,” or the word “Yes” or “No.” Be prepared to justify your answers.

Set L.B. U.B. min max sup inf is sup in set? set bounded?
{x ∈ R : 0 ≤ x < 1}
{x ∈ R : 0 ≤ x ≤ 1}
{x ∈ R : 0 < x < 1}
{1/n : n ∈ Z \ {0}}
{1/n : n ∈ N}
{x ∈ R : x <

√
2}

{1, 4, 9, 16, 25}
{(−1)n(2− 1/n) : n ∈ N}
{ln(x) : x ∈ R, x > 0}

{ex : x ∈ R}

open / DD
4. Prove that any open ball BR(p0) in any metric space E is an open set.
Hint : for any point p in the ball, find its distance to the boundary of the ball using
p0 and R, and choose a smaller number as the radius of the open ball around p.
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bound / AJ 1. For each of the following statements, either say it is true and explain why, or say it is
false and provide a counterexample. Hint : Consider the examples from Page 5 # 3.

(a) Every set has a maximum.

(b) Every set has a minimum.

(c) If a set is bounded, then it has a supremum.

(d) If a set is bounded, then it has an infimum.

(e) If a set has an infimum, then it is bounded below.

(f) If a set has a supremum, then it is bounded above.

(g) If a set is bounded, then it has both a maximum and a minimum.

(h) If a set has a maximum, then it is bounded above.

(i) If a set is bounded above, then it has a maximum.

Negating a statement. The contrapositive of “A =⇒ B” is “not B =⇒ not A.” The
statement “not A” is the negation of statement A. I think of this as someone saying “A!”
and someone replying “No, you’re wrong, (negation of A)!” For example:

Person 1: Everyone in this class is named Max.
Person 2: You’re wrong! Not everyone in this class is named Max. (true, but not useful)
Person 1: How do you know?
Person 2: There exists a person in this class not named Max. (checkable! useful!)

logic / DD 2. Negate the following statements in a checkable, useful manner.

(a) All U.S. citizens can vote.

(b) Every point of S has a ball around it.

(c) Some ball around p contains a point of S.

(d) One of my classes meets on Saturday.
————————————

(e) Notice that the negation of an “all” or “none” statement is an existence statement (parts
(a) and (b)), while the negation of an existence statement is an “all” or “none” statement
(parts (c) and (d)). Explain why this is the case.
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The boundary, interior and closure. Let S be a subset of a metric space E. A point
p ∈ E is a boundary point of S if every open ball about p contains points of S and points
of SC . The boundary of S, denoted ∂S, is the collection of all of the boundary points of S.

The closure of S, denoted S, is S ∪ ∂S. The interior of S, denoted
◦
S, is S \ ∂S.

open / DD 1. Find ∂S, S and
◦
S for each set S that is a subset of the given metric space, with the

standard Euclidean metric:

(a) (0, 1] ⊂ R (b) Z ⊂ R (c) Q ⊂ R (d) B1(0, 0) ⊂ R2

open / FM 2. Prove that every point in a set is either a boundary point or an interior point.

The following is an example of a proof by contradiction: We begin by supposing the opposite
of what we want to prove, and we show that it leads to a contradiction (something that is
clearly false). This shows that the thing we initially supposed was false, which shows that
the thing we want to prove is true. A proof by contradiction takes the following form:

Proof. We will show A.
Suppose not A.
[Steps of logical reasoning.]
Therefore, not-A is false, so A is true.

seq / FM 3. Theorem. A sequence {pi}∞i=1 of points in a metric space E has at most one limit.

Proof. We will show that a sequence of points in a metric space E has at most one limit.
We will do this by contradiction, by supposing that it has two different limits, and showing
that the two limits must be the same, by showing that the distance between them is 0.

Suppose that the sequence {pi}∞i=1 in metric space E has two different limits, p and p′. By
definition of p and p′ each being a limit point, we know that:

Given any ε/2 > 0, there exists N such that d(p, pi) < ε/2 for all i > N , and

given any ε/2 > 0, there exists M such that d(p′, pi) < ε/2 for all i > M .

Given ε > 0, choose a number n > max{N,M}.
(Finish the proof.)
Hint : Look at the picture.

logic / DD 4. We used ε/2 to findN andM so
that the bound comes out cleanly
to ε at the end, but it would also
have been fine to use ε and come
out with a bound of 2ε at the end.
Explain why a bound of 2ε would
also prove that the two limit points
coincide.
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Bounded sets. A set is bounded if it is contained in a finite ball.
More precisely, a subset S of a metric space E is bounded if there exists p ∈ E and r > 0
such that S ⊂ Br(p).

seq / DD 5. In R with the usual Euclidean metric, show that the set {1000 − 500/n2 : n ∈ N} is
bounded by finding a suitable p and r.

open / FM 6. Theorem. The union of any collection of open sets is open.

Note: In order to even talk about this, we need a way of indexing an arbitrary collection of

sets. We can’t use
k⋃

n=1

or
∞⋃
n=1

, because the collection might be uncountable. The way we get

around this is to use the symbol α, which represents an arbitrary indexing set:
⋃
α

Aα.

Proof. We will show that .

We will do this by showing that, for any p in the union, there is an open ball around p con-

tained in the union. Let p ∈
⋃
α

Aα. Then for some α0, p ∈ Aα0 , because .

Since Aα0 is open, . . . (complete the proof).

open / FM 7. Theorem. The intersection of a finite number of open sets is open.

Proof. We will show that .
We will do this by showing that, for any p in the intersection, there is an open ball around

p contained in the intersection. Let p ∈
n⋂
k=1

Ak. Then p ∈ Ak for all 1 ≤ k ≤ n, because

.
Thus, there exist rk ∈ R such that Brk(p) ⊂ Ak for each k.
(Complete the proof.) Hint : See picture.

open / DD 8. Consider the (false!) statement: The intersection
of infinitely many open sets is open.

(a) Explain where the proof above breaks down for
infinitely many sets.

(b) Give a counterexample to the statement.
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Continuity. “Nearby points are sent to nearby points.” There are three (!) equivalent
definitions of what it means for a function to be continuous. We will explore each of them.
Then we will prove their equivalence.

The ε–δ definition of continuity.

Let E,E ′ be metric spaces with distance
metrics d, d′ respectively. Let f : E → E ′

be a function, and let x0 ∈ E. We say
that f is continuous at x0 if, for any ε > 0,
there exists δ > 0 such that, for x ∈ E,

d(x, x0) < δ =⇒ d′(f(x), f(x0)) < ε.

We say that f is continuous if it is contin-
uous everywhere in E.

Note: δ may depend on (be a function of) both x0 and ε, because in the definition of
continuity, we choose x0 first, then we are given ε, and finally we get to choose δ to make it
work.

cont / DD 1. Define f : R → R by f(x) = 1 + 2x. Explore
the epsilon-delta definition of continuity by finding a
δ for each given x0 and ε so that, for any x ∈ R,

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

(a) x0 = 1, ε = 1

(b) x0 = 1, ε = 0.1

(c) x0 = 2, ε = 0.001

Hint : Draw in dashed lines as in the figure above.

seq / FM 2. Prove that “the limit of a sum is the sum of the limits”: If {an} and {bn} are sequences
of real numbers, with lim

n→∞
an = a and lim

n→∞
bn = b, then lim

n→∞
(an + bn) = a+ b.

Hint : At the end, you will want to show that |(an + bn)− (a+ b)| < ε, so break it into two
parts using rules of absolute values, and take n large enough that certain quantities are less
than ε/2.

seq / DD 3. Explain why, in the previous problem, we took {an} and {bn} to be sequences of real
numbers, rather than just sequences in an arbitrary metric space.
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bound / AJ 4. In each of the following pairs, exactly one of the statements is true. For the one that is
true, explain why; for the one that is false, provide a counterexample.

(A1) If a set of real numbers is bounded above, then it has a maximum.

(A2) If a set of real numbers is bounded above, then it has a supremum.

(B1) If a set of real numbers has a supremum, then it has a maximum.

(B2) If a set of real numbers has a maximum, then it has a supremum.

(C1) If a set of real numbers is has an infimum, then the infimum is in the set.

(C2) If a set of real numbers is has a minimum, then the minimum is in the set.

Closed sets. A subset S of a metric space E is closed if SC is open.

A closed ball in a metric space E, with center p0 and radius r, is the set {p ∈ E : d(p, p0) ≤ r},
or in other words Br(p0).

closed / DD 5. Prove that the empty set is closed.

closed / DD 6. Prove that, for any metric space E, the entire space E is closed.

closed / DD 7. We have now proved that the empty set is both open and closed, and also that any entire
space E is both open and closed. Are these contradictions? Explain.

If you have extra time, consider the following problem asked by a former student:

metric / DD 8. (Rick Muniu) Give an example of a distance function on a metric space that satisfies the
triangle inequality, but fails to satisfy one of the other three properties of a metric.

Also remember to write up to hand in your proof of the result in Page 4 # 6.
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Bounded sequences. A sequence of points {pi}∞i=1 in a metric space is bounded if it is
bounded as a set, i.e. if it is contained in a ball.

seq / DD 1. Theorem. Every convergent sequence is bounded.

Proof. We will show that every convergent sequence is bounded. We will do this by con-
structing a ball that contains all of the points of the sequence. Take ε = 1. Then there exists
N such that, for all n > N , d(pn, p) < 1, because .
Now take r = max{1, d(p, p1), d(p, p2), . . . , d(p, pN)}.
(Finish the proof).

seq / DD 2. State the converse (note: converse, not contrapositive) of the theorem in Problem 1.
Then either prove it or give a counterexample.

cont / AJ 3. Let’s explore the epsilon-delta definition of continuity. For each function f : R → R,
compute f(x0) and draw a sketch of f(x) in the vicinity of x0. In the next columns, write out
the “allowable output range” (f(x0)− ε, f(x0) + ε) for the given x0 and ε, and then write
out the corresponding “permissible input range” (x0 − δ, x0 + δ), if it exists, for each value
of ε (in the same box). Finally, say if f is continuous at x0.

function and x0 value f(x0) sketch ε = 1 ε = 0.1 cont?

f1(x) = |x|, x0 = 0

f2(x) =

{
x x ≤ 1

2x− 0.5 x > 1
, x0 = 1

f3(x) =

{
1 x ∈ Q

0 x /∈ Q
, x0 = 0

f4(x) =

{
1/x x 6= 0

2 x = 0
, x0 = 0

f5(x) =

{
sin(1/x) x 6= 0

0 x = 0
, x0 = 0

f6(x) =

{
x · sin(1/x) x 6= 0

0 x = 0
, x0 = 0

cont / AJ 4. When you couldn’t find a δ for a particular ε, why not? When you could find a δ for a
particular ε, was δ unique? If not, could you find a maximum value for δ? A minimum?
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Continuity. “Nearby points are sent to nearby points.” As stated before, there are three
equivalent definitions of what it means for a function to be continuous, which we will later
prove are equivalent. This is the second one.

The sequence definition of continuity.

Let E,E ′ be metric spaces with distance metrics d, d′ respectively. Let f : E → E ′ be a
function, and let x0 ∈ E.

We say that f is continuous at x0 if, for every sequence {xn} ⊂ E with lim
n→∞

xn = x0, we

have lim
n→∞

f(xn) = f(x0).

As before, we say that f is continuous if it is continuous everywhere in E.

seq / DD 5. Use the sequence definition of continuity to show that the function f2 from the table
earlier in this problem set is not continuous.

Inverses.

• If f : X → Y is one-to-one and onto (bijective),
then we define the inverse of f to be the function
f−1 : Y → X, defined such that f−1(y) = x when
f(x) = y.

• We define the image of a set A ⊂ X as the collection
of images of points in A, f(A) = {f(a) : a ∈ A}.

• No matter if f is bijective or not, we define the inverse
image of a set B ⊂ Y as the collection of points in X
that map to points in B:

f−1(B) = {x ∈ X : f(x) ∈ B}.

func / DD 6. Define f : R→ R by f(x) = x2, shown above. Find each of the following, or say why
it is not possible:

(a) f
(
[−2,−1]

)
(b) f−1

(
(0, 2)

)
(c) f−1

(
(−2,−1)

)
(d) f−1(x) for some x ∈ R

If you have extra time, you can think about these, which will do in class soon:

seq / DD 7. Let {ai}, {bi} be convergent sequences of real numbers under the standard Euclidean
metric, with limits a and b respectively. Prove that if ai ≤ bi for all i, then a ≤ b.

seq / DD 8. Prove or give a counterexample for the statement above, with “≤” replaced by “<.”
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bound / DD 1. Give an example of each of the following:

(a) Sets A ⊂ B with sup(A) < sup(B);

(b) Sets A ( B for which sup(A) = sup(B).

Monotonicity. We use the following terms to describe sequences of real numbers:

• A sequence {ai}∞i=1 is increasing if a1 ≤ a2 ≤ a3 ≤ . . .

• A sequence {ai}∞i=1 is decreasing if a1 ≥ a2 ≥ a3 ≥ . . .

• A sequence is monotone if it is either increasing or decreasing.

seq / DD 2. Prove or give a counterexample: Every convergent sequence of real numbers is monotone.

open / FM 3. Prove that, for any set S, the interior of S is an open set.

open / FM 4. Prove that, for any set S, the interior of S is the largest open set contained in S.

closed / DD 5. Prove that a closed ball is a closed set: for any metric space E, any point p0 ∈ E, and
any radius R > 0, the closed ball BR(p0) is closed.

Spring 2023 10 Diana Davis



Real Analysis

Review for Test 1 – optional problems

vocab / FM 1. Write the definition of each term, as a full sentence: (a) subset (b) countable

(c) supremum (d) minimum (e) open (f) closed (g) metric space

(h) bounded (i) limit (j) converge (k) lim inf (l) monotone

(m) boundary (n) interior (p) closure (q) continuous (r) inverse image

vocab / FM 2. For each term in problem 1, write down a result (Theorem, etc.) that uses it.

sets / FM 3. Consider the statement “Every finite union of open sets is open.” For each entry in
the following table, replace “finite union” and “open” with the other words as indicated, and
decide whether the resulting statement is True or False. If it is false, give a counterexample.

set property finite ∪ countable ∪ arbitrary ∪ finite ∩ countable ∩ arbitrary ∩
open
closed
countable
uncountable
bounded

sets / FM
4. Let A be a subset of a metric space E.

(a) Define the boundary of A.

(b) Define what it means for A to be open.

(c) Prove that A is open if and only if A contains none of its boundary, i.e. A ∩ ∂A = ø.

seq / FM 5. Prove that if an ≤ bn ≤ cn for each n ∈ N, and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

seq / FM 6. Is Q open in R? Justify your answer.

/ DD 7. In the topic dependence map on Page iii, circle the topics in which you are confident.
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Covers. Given a set S, a collection of sets {Gα} is a cover of S if S ⊂
⋃
α

Gα.

{Gα} is an open cover if all of the Gα are open sets.

Note: recall (Page 7 # 6) that we use the symbol α to index an arbitrary indexing set, which
may not be countable. A picture of an open cover of R2 by filled ellipses is in the background
of the cover (ha!) of Real Analysis by Frank Morgan.

cpt / DD 1. Construct an open cover that:

(a) covers R, using unit intervals;

(b) covers R2, using unit balls;

(c) covers {1/n : n ∈ N}.

cont / DD 2. The open set definition of continuity (just below) uses inverse images. First, let’s think
about images. Prove or give a counterexample: If f : E → E ′ is a continuous function, and
U is open in E, then f(U) is open in E ′.

Continuity. Here is the third of the three equivalent definitions of what it means for a
function to be continuous. We will prove their equivalence soon.

The open set definition of continuity.

Let E,E ′ be metric spaces with distance metrics d, d′ respectively, and let f : E → E ′.

We say that f is continuous if, for every open set U ⊂ E ′, f−1(U) is open in E.

cont / DD 3. Use the open set definition of continuity to show that the function f : R → R defined
by f(x) = x2 is continuous.

More on open sets. So far, we have used the “every point is contained in an open ball”
characterization of an open set. The following Theorem gives an alternative characterization.

open / DD 4. Theorem. Let E be a metric space, and let S be a subset of E, considered as a metric
space itself. For a subset A ⊂ S, the following are equivalent:

(1) A is open in S.

(2) There exists a set
∼
A that is open in E, such that A =

∼
A ∩ S.

Prove this. Hint : To prove that (1) =⇒ (2), show that
∼
A ∩ S ⊂ A and that A ⊂

∼
A ∩ S.

Note: the symbol ∼ is “tilde,” pronounced “TILL-duh,” and
∼
A is read aloud as “A tilde.”
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closed / DD 5. Prove that the union of a finite number of closed sets is closed. Hint : First, argue that(
n⋃
k=1

Ai

)C

=
n⋂
k=1

Ai
C . Then argue that, if each Ai is closed, this intersection is open.

closed / DD 6. Prove that the intersection of any collection of closed sets is closed.
Hint : apply a previous result.

An axiom is a statement that we take as fact, without proof, generally because it is impossible
to prove it from our other axioms and yet it is necessary for the structure of our work. The
following statement, which we have previously discussed, is an axiom:

Completeness axiom. A nonempty set of real numbers that is bounded from above has a
least upper bound.

bound / DD 7. Theorem. Let S be a nonempty, closed subset of R that is bounded from above. Then
S has a maximum element.

Proof. We will show that any nonempty, closed subset S ⊂ R that is bounded from above
has a maximum element. We will do this by showing that the least upper bound a of S is
contained in S. The proof will be by contradiction: we will first suppose that a /∈ S, and
derive a contradiction. (Fill in the reasoning steps in the following proof.)

Let a be the least upper bound of S. We know that the least upper bound exists, by the
completeness axiom. We want to show that a ∈ S. Suppose, for a contradiction, that a /∈ S.
SC is open, because .
Thus there exists some r > 0, such thatBr(a) ⊂ SC , because .
But then a− r is also an upper bound for S, because .
This contradicts a being the least upper bound for S, because .
Thus a ∈ S, and thus S has a maximum element, as desired.

bound / DD 8. (Continuation) The statement of the theorem contains the conditions that S is a nonempty,
closed subset of R. Give a counterexample or explanation for why the conclusion “S has a
maximum element” fails to be true if we remove the assumption that:

(a) S is nonempty; (b) S is closed; (c) S is a subset of R.
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Accumulation points. Let S be a subset of a metric space E. A point p ∈ E is an
accumulation point of S if, for every ε > 0, Bε(p) contains an infinite number of points from
S. (An accumulation point is also called a cluster point or limit point.)

sets / DD 1. For each of the following subsets of R with the Euclidean metric, describe its set of
accumulation points.

(a) Q (b) the irrationals (c) (a, b] (d) {1} (e) {1/n : n ∈ N} (f) Z

Isolated points. Let S be a subset of a metric space E. A point p ∈ S is isolated if there
exists r > 0 such that p is the only point of S in Br(p).

sets / FM 2. Let S be a subset of a metric space E. Prove that every point of S is either an isolated
point in S or an accumulation point of S (but not both).

closed / DD 3. For a point p ∈ Rn, consider the set S =
∞⋂
m=1

{x ∈ Rn : d(x, p) ≤ 1/m}.

(a) Prove that S is closed. Hint : Use a previous result.

(b) Give a simple description of the set S.

(c) Prove that any single point {p}, where p ∈ Rn, is a closed set.

A new metric space.

Let B = {bounded, real-valued functions on R}
= {f : R→ R such that there exists M ∈ R with |f(x)| < M for all x ∈ R}.

For f, g ∈ B, define d(f, g) = sup{|f(x)− g(x)| : x ∈ R}.
metric / DD 4. Let f(x) = cos(x) and g(x) = 2. Explain why f, g ∈ B, and find d(f, g).

metric / DD 5. Show that d is a metric on B.
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cpt / DD 1. For each set Si ⊂ R, explain why Gi is an open cover of Si.

(a) S1 = {π}, G1 = {(1/(n+ 1), n) : n ∈ N}
(b) S2 = [−3, 11], G2 = {(n, n+ 2) : n ∈ Z}
(c) S3 = [2,∞), G3 = {(n, n+ 2) : n ∈ N}
(d) S4 = (0, 1), G4 = {(1/n, 1− 1/n) : n ∈ N}
For some of these, a finite subset of Gi still covers Si. Which ones?

Subsequences. We like sequences to converge, but most don’t. Fortunately, most sequencesseq / FM

have subsequences that do converge. Given a sequence an, a subsequence amn consists of some
(infinitely many) of the terms, in the same order.

The lim sup and lim inf. Even for sequences that are not convergent, sometimes elements
of the sequence do accumulate. The following always exist:

• The lim inf of a sequence is the smallest limit of any subsequence, or ±∞.

• The lim sup of a sequence is the largest limit of any subsequence, or ±∞.

Note: “lim sup” is pronounced “limm soup.”

bound / AJ 2. In the following table, write out the first 8 terms of any sequence for which they are not
already written out for you. Then find the lim inf and lim sup of each sequence.

sequence first 8 terms lim inf lim sup
an = 1/n
an = sin(nπ/2)
1,−1, 2,−2, 3,−3, 4,−4, . . .
an = −n2

an = 2 +
(−1)n

n

an =

{
3− e−n if n is even

3 if n is odd
1
2
, 11

2
, 21

2
, 1
4
, 11

4
, 21

4
, 1
8
, 11

8
, 21

8
, . . .

bound / AJ 3. Make a conjecture as to what conditions ensure that the lim inf of a sequence equals its
lim sup. Then prove your conjecture.
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Continuity. “Nearby points are sent to nearby points.” We have seen three definitions;
we’ll now prove their equivalence.

Let E,E ′ be metric spaces with distance metrics d, d′ respectively. Let f : E → E ′ be a
function, and let x0 ∈ E. We say that f is continuous at x0 if:

(1) For any ε > 0, there exists δ > 0 such that, for x ∈ E,

d(x, x0) < δ =⇒ d′(f(x), f(x0)) < ε.

(2) For every sequence {xn} with lim
n→∞

xn = x0, we have lim
n→∞

f(xn) = f(x0).

(3) For every open set U ⊂ E ′, f−1(U) is open in E.
(this one is everywhere, not just at x0)

We say that f is continuous if it is continuous everywhere in E.

cont / FM 4. Theorem. The three definitions (1), (2), (3) of continuity are equivalent.

Either prove this using your own method, or follow the proof structure below.

Proof. We will prove that the three are equivalent by proving (1) ⇐⇒ (2) and (1) ⇐⇒ (3).

(a) (1)⇐⇒ (2). Hint : Prove (1) =⇒ (2) directly, and (2) =⇒ (1) using the contrapositive.

(b) (1) =⇒ (3): Let U be an open set in E ′. We wish to show that f−1(U) is open, so we need
to show that, for any p ∈ f−1(U), there is an open ball about p in the set .
Let p ∈ f−1(U). Then f(p) ∈ U , so there exists ε > 0 such that f(p) is contained in

in the set .
Since we assume (1), we can choose δ > 0 such that

|x− p| < δ =⇒ |f(x)− f(p)| < ε, and thus

|x− p| ≤ δ/2 =⇒ |f(x)− f(p)| < ε.

Here we divided δ by 2 so that .

Now we have shown that B(p, δ/2) ⊂ f−1(B(f(p), ε)) ⊂ f−1(U), so. . . (Finish the proof)

(c) (3) =⇒ (1): Hint : Since the inverse image of the open ball about f(p) of radius ε is
open and contains p, it contains some ball B(p, δ), so |x − p| < δ =⇒ |f(x) − f(p)| < ε.
Fill in the details.
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0. Hand-in problem. (essentially Page 13 # 2)

Theorem. Let S be a subset of a metric space E. Then every point of S is either an isolated
point of S or an accumulation point of S (but not both).

Proof. . . .

If you did not type your first proof in LATEX, please consider typing this second one. It is a
useful (and fun!) skill to learn, and I am happy to help you. (Typing is not required.)

——————

closed / DD 1. Claim. For any set S,

S =
⋂

C closed, S⊂C

C.

(a) Write out the statement in words.

(b) Prove it.

Sometimes this is used as the definition of the closure of S.

We use “Proposition” for a statement that is bigger than a Claim but smaller than a Theorem:

seq / FM 2. Proposition. Every bounded sequence in R (with the usual Euclidean metric) has a
convergent subsequence.

(Prove this using your own method, or follow the structure below.)

We will first show that every bounded sequence of nonnegative real numbers in R has a con-
vergent subsequence. We will do this by explicitly constructing a convergent subsequence.
Consider a nonnegative sequence a1, a2, a3, . . .. Each an starts off with a nonnegative integer
before the decimal point, followed by infinitely many digits (possibly 0) after the decimal
point. Since the sequence an is bounded, some integer part D before the decimal place occurs
infinitely many times, because .
Throw away the rest of the an. Among the infinitely many remaining an that start with D,
some first decimal place d1 occurs infinitely many times. Throw away the rest of the an.

Complete the construction of a number L = D.d1d2d3 . . ., and prove that there is a subse-
quence of an converging to L.

Finally, show that every bounded sequence of real numbers has a convergent subsequence,
to complete the proof of the Proposition as stated.
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cont / DD 3. Define f : R → R by f(x) = 2x. Show that f is continuous at
x = 1/2 (using whatever method you like).

Uniform continuity. f : E → E ′ is uniformly continuous if,
for any ε > 0, there exists δ > 0 such that for any p, q ∈ E,

d(p, q) < δ =⇒ d′(f(p), f(q)) < ε.

uni-con / DD 4. Let E = (0, 1), and define f1, f2 : E → R by f1(x) = 2x and
f2(x) = 1/x. These are illustrated to the right.

(a) Let x0 = 1/2. Given any ε > 0, find δ1 so that

|x− x0| < δ1 =⇒ |f1(x)− f1(x0)| < ε.

(b) Let x0 = 1/2. Given any ε > 0, find δ2 so that

|x− x0| < δ2 =⇒ |f2(x)− f2(x0)| < ε.

(c) Repeat part (a), for x0 = 1/10.

(d) Repeat part (b), for x0 = 1/10.

(e) Both functions are continuous on (0, 1), but only one is uniformly
continuous on (0, 1). Explain geometrically what causes the difference.

5. What is the difference between continuity and uniform continuity?

——————
Extra problems for if we have time in class

closed / DD 6. Consider the (false!) statement: The union of infinitely many closed sets is closed.

(a) We proved in Page 12 # 5 that the union of finitely many closed sets is closed. Explain
where the proof breaks down for infinitely many sets.

(b) Give a counterexample to the statement.

metric / DD 7. Consider a metric space E with the discrete metric.

(a) What do open balls look like in this space? What do closed balls look like in this space?

(b) True or False: Any finite set of points, in a metric space E with this metric, is open.
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Sequence definition of a closed set. So far, to show that a set is closed, we have to show
that its complement is open. After proving the following Theorem, we will have another
way. In fact, the following Theorem is sometimes used as the definition of a closed set.

closed / FM 1. Theorem. Let S be a subset of a metric space E. Then S is closed if and only if every
convergent sequence of points from S converges to a point in S.

Prove this. (Remember that this is an “if and only if” statement, so we need to show both
directions of implication.) Hint : you proved one direction on your test.

Cauchy sequences. A sequence {pn}∞n=1 in a metric space E is Cauchy (“COE-she”) if,
for any ε > 0, there exists N such that

m,n > N =⇒ d(pm, pn) < ε.

You can think of a Cauchy sequence as one that is “trying” to converge, but to a limit that
may be outside of its metric space.

Cauchy / DD 2. Explain the difference between the definition of a Cauchy sequence and the definition of
a convergent sequence.

Cauchy / DD 3. Consider the sequence {an = 1/n : n ∈ N} in R+ = {x ∈ R : x > 0} with the usual
Euclidean metric.

(a) Show that {an} is a Cauchy sequence.

(b) Show that {an} does not converge in this metric space.

Cauchy / FM 4. Prove that a convergent sequence in any metric space is Cauchy.

Cauchy / FM 5. Prove that a Cauchy sequence in any metric space is bounded. Hint : The proof that
shows that a convergent sequence is bounded works here, too.

Given a cover G of a set S, a finite subcover is a collection consisting of finitely many of the
sets in G, that still covers S.

cpt / DD 6. For each of the following open covers Gi of the set Si, find a finite subcover (a subset of
the cover, consisting of finitely many sets) that still covers Si.

(a) S1 = {1, 2, 3, 4, 5}, G1 = {(−n, n) : n ∈ N}
(b) S2 = [−3, 11], G2 = {(x, x+ 1) : x ∈ R}

cpt / DD 7. Give an example of a set S, and an open cover G of S, for which no finite subcover of G
covers S. Make a conjecture as to what properties of S and G make this possible.
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cont / FM 1. Let g : E → E ′ and f : E ′ → E ′′ be continuous functions. Prove that their composition
f ◦ g : E → E ′′, i.e. x 7→ f(g(x)), is continuous, using each definition of continuity:

(a) epsilon-delta definition (b) sequence definition (c) open set definition.
—————————

(d) Which way did you most prefer? Which did you least prefer?

The notion of a compact set is very important in analysis; it is why we have been thinking
about open covers. In the upcoming Heine-Borel Theorem, we will show that, in Rn, a
compact set is just a set that is closed and bounded. The definition itself uses open covers:

Compactness. A subset X of a metric space E is compact if every open cover of X has a
finite subcover.

However, this definition is rather difficult to check. Sure, we can find an open cover, but
how do you check that every possible open cover has a finite subcover?

cpt / DD 2. Show that R is not compact, by finding an open cover that has no finite subcover.

cpt / DD
3. Show that (0, 1] is not compact, by finding an open cover that has no finite subcover.

We like compact sets because they tend to be the sets that have the properties we want.
For example, eventually we will show that a continuous function on a compact set achieves
a maximum and minimum, which is very useful in calculus.

open / DD 4. S = [0,∞) is a subset of the metric space R with the usual Euclidean metric, but S itself
is also a metric space, with the inherited metric from R. Which of the following are open
sets in S?

(a) (0, 1) (b) [0, 1) (c) (0, 1] (d) [0, 1]

5. Prove that for all sequences {an} ⊂ R,

lim inf {an} ≤ lim sup {an}.

We proved the following for sequences in R. Is it also true for sequences in a general metric
space? Either prove it, or give a counterexample:

bdd / DD 6. Every bounded sequence has a convergent subsequence.
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Optional review problems for Test #2

vocab / FM 1. Write the definition of each term, as a full sentence:

(a) subsequence (b) accumulation point (c) isolated point (d) Cauchy

(e) complete (f) cover (g) compact (h) uniformly continuous

vocab / DD 2. For each of the terms above, write a result (Theorem, etc.) that uses it.

closed / FM 3. Prove that any finite set of points in Rn is closed. Hint : use a previous result

sets / DD 4. Find the set of accumulation points in R2 for each of the following sets:

(a) {(p, q) : p, q ∈ Q} (b) {(m/n, 1/n) : m,n ∈ Z, n 6= 0}

Without looking at your notes, write down the proofs of the following results:

cont / DD 5. The ε− δ and sequence definitions of continuity are equivalent.

cont / DD 6. The ε− δ and open set definitions of continuity are equivalent.

bdd / DD 6. Every bounded sequence of real numbers has a convergent subsequence.

bdd / FM 7. Let S be a nonempty, closed subset of R that is bounded from above. Then S has a
maximum element.
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uni-con / DD 1. Let’s recall the difference between continuity and uniform continuity.

(a) Explain why f uniformly continuous =⇒ f continuous.

(b) Explain why f continuous ; f uniformly continuous by providing a counterexample.

In fact, f continuous =⇒ f uniformly continuous in the special case when the domain of f
is compact. Let’s prove it. This will also give us some experience in applying the fact that
every open cover has a finite subcover.

uni-con / FM 2. Theorem. Let E,E ′ be metric spaces, and let f : E → E ′ be a continuous function. If
E is compact, then f is uniformly continuous.

Proof. Given any ε > 0, we will construct a δ such that, for all p, q ∈ E,

d(p, q) < δ =⇒ .

Given ε > 0, we know that for each x0 ∈ E, there is a δx0 > 0 such that

d(p, x0) < δx0 =⇒ d′(f(p), f(x0)) < ε/2,

because .

Consider the open ball Ux0 = {p : d(p, x0) < δx0/2}. The collection {Ux} of all such open
balls covers E, because .

Since E is compact, it has a finite subcover {Ux1 , . . . ,Uxn}. Let δ = min{δxi/2 : i = 1, . . . , n}.
We will show that this is the δ with the desired property.

Suppose that d(x, x0) < δ. Since x0 ∈ E, x0 ∈ Uxj for some j in {1, . . . , n}, so d(x0, xj) < δxj/2.
Since d(x, x0) < δ ≤ δxj/2, we have d(x, xj) < δxj , by . Therefore,

d′(f(x0), f(xj)) < ε/2 and d′(f(x), f(xj)) < ε/2, so

d′(f(x), f(x0)) ≤ d′(f(x0), f(xj)) + d′(f(x), f(xj)) < ε/2 + ε/2 = ε,

as desired.

Complete metric spaces. A metric space E is complete if every Cauchy sequence of points
in E converges to a point in E.

Cauchy / DD 3. Show that each of the following metric spaces (using the usual Euclidean distance metric)
is not complete, by finding a Cauchy sequence of points in the space that does not converge
to a point of the space:

(a) R+ = {x ∈ R : x > 0} (b) Q

Cauchy / DD 4. Prove that a Cauchy sequence that has a convergent subsequence is itself convergent.
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Real Analysis

cpt / AJ 5. Proposition. S = {0} ∪ {1/n : n ∈ N} ⊂ R is a compact set.

(a) Draw a picture of this set.

(b) Proof. We will show that S is compact, by explicitly constructing a finite subcover from
any open cover. Consider an arbitrary open cover ∪ Gα of S. 0 must be in some open set
Gα, because , so call this open set Gα0 . Then there
exists an open ball Br(0) ⊂ Gα0 , because . Then
for all n > 1/r, we have 1/n ∈ Br(0), because .
So {0} ∪ {1/n : n > 1/r} ⊂ Gα0 . (Finish the proof.)

seq-fn / DD 6. Graph the following functions, for n = 1, 2, 3, 4, 5:

fn(x) =

{
1− nx if 0 ≤ x < 1/n

0 if 1/n ≤ x

Is there a “limit function” as n→∞? If so, say what it is.
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Real Analysis

0. Hand-in problem. Write up a proof of Page 19 # 4:

Proposition. A Cauchy sequence that has a convergent subsequence is itself convergent.

Cauchy / FM 1. Theorem. R is complete. (Prove this)
Hint : One method is to use the results of Page 15 # 2 and Page 16 # 5 and argue (using an
ε−N proof) that every sequence converges to the same limit as its convergent subsequence.

We use the word “Corollary” for a result that follows directly from an existing Proposition
or Theorem:

Cauchy / AJ 2. Corollary. Rn is complete. (Prove this.)
Hint : Repeat the same argument as above, for each coordinate.

sets / AJ 3. Proposition. An infinite subset of a compact metric space has at least one accumulation
point.

(a) Give an example of the above result: a compact metric space E, and an infinite subset
S of E that has at least one accumulation point.

(b) Prove the Proposition, using your own method or the following outline:

Proof. We will prove this by contradiction, by assuming that the subset has no accumulation
point, and showing that the subset must be finite. Suppose that A ⊂ E is an infinite set with
no accumulation point. Then for each p ∈ E, there exists an rp such that Brp(p) contains
only finitely many points of A, because .

Then
⋃
p∈E

Brp(p) is an open cover of E, because .

Since E is compact, there is a finite subcover Br1(p1) ∪ · · · ∪Brk(pk) that covers E.

(Finish the proof.)

seq-fn / DD 4. The first four terms of a sequence fn of functions
R≥0 → R≥0 are shown to the right. The piecewise equa-
tions for the functions are given below, but the idea of this
problem is to think about the picture.

(a) Is there some limit function as n → ∞? If so, say
what it is.

(b) What is the integral over [0,∞) of fn for each n?
Does the integral value have a limit as n→∞?

fn(x) =


22n−3x if 0 ≤ x ≤ 22−n

2n − 22n−3x if 22−n ≤ x ≤ 23−n

0 if 23−n ≤ x
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Real Analysis

cpt / DD 5. Theorem. Let K and S be subsets of a metric space E. Suppose K ⊂ S ⊂ E. Then K
is compact in S if and only if K is compact in E.

Proof. (⇐=) Suppose that K is compact in E. We will show that K is also compact in S,
by showing that every open cover of K in S has a finite subcover. Take any open cover {Uα}
of K in S. By the Theorem in problem , for each α, Uα =

∼
Uα for a set

∼
Uα∩E

that is open in E. Then {
∼
Uα} gives an open cover of S in E. Since K is compact in E, there

exists a finite subcover of K in E, so . . .

(a) Finish the proof of this direction of implication.

(b) Prove the other direction of implication.
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Real Analysis

Don’t just read math; fight it! – Paul Halmos

Heine-Borel Theorem. For a set S ⊂ Rn, the following are equivalent:
(1) Every sequence in S has a subsequence converging to a point of S.
(2) S is closed and bounded.
(3) S is compact: every open cover has a finite subcover.

cpt / FM 1. Proof. We will prove that (3) =⇒ (2) =⇒ (1) =⇒ (3). This will prove that all three
criteria are equivalent, because .

cpt / FM 2. (3) =⇒ (2). We will prove the contrapositive: if S is not closed or not bounded, then
there is some open cover that has no finite subcover.
(Part 1) Suppose that S is not closed. Then some convergent sequence of points from S
converges to a point a that is not in S, because . Then a is
an accumulation point for S, because . Then the open cover
{x : |x− a| > 1/n : n ∈ N} has no finite subcover, because .
(Part 2) Suppose that S is not bounded. Then the open cover {x : |x| > n : n ∈ N} has no
finite subcover, because .

cpt / FM 3. (2) =⇒ (1). We will show that, if S is closed and bounded, then every sequence in S has
a subsequence converging to a point of S. Take any sequence in S ⊂ Rn. First, just look at
the first of the n components of each point. Since S is bounded, the sequence of the first com-
ponents is bounded, because . So for some subse-
quence, the first components converge, because .
Similarly, for a further subsequence, the second components converge. Eventually, for some
further subsequence, each of the components converge, because .
The limit point is in S, because .

cpt / FM 4. (1) =⇒ (3). We will show that, if every sequence in S has a subsequence converging to
a point in S, then every open cover of S has a finite subcover. First, we will show that every
open cover has a countable subcover, and then we will show, using a proof by contradiction,
that it must actually have a finite subcover. Given an open cover {Gα} of S, we will construct
a countable subcover. Every point of S lies in a ball of rational radius about a rational point,
because . Each of these countably many balls is
contained in some Gα0 , because . So a countable
open cover {Vi} of S is given by .

cpt / FM 5. Now suppose that {Vi} has no finite subcover. Choose x1 ∈ S\V1. Choose x2 ∈ S \ (V1 ∪ V2).

Continue, choosing xn in S\
n⋃
i=1

Vi, which is always possible, because .

For each value of i, there are only finitely many xn, with n < i, contained in Vi, because
. Because ,

the sequence xn has a subsequence converging to some x ∈ S, with x ∈ Vi for some i. Thus in-
finitely many xn are contained in Vi, which is a contradiction because .
Thus every open cover of S has a finite subcover, as desired.
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Real Analysis

1. A summary list of previous results. For each problem listed below, write the statement
of the result in plain English (or plain other language of your choice). I have filled in several
of them for you, so that you can see what I mean. The purpose of this is to make it easier
to remember and reference these results.

4 # 4

4 # 6 The entire metric space is always open.

7 # 2

7 # 3

7 # 6

7 # 7 A finite intersection of open sets is open.

8 # 5

8# 6

9 # 1

12 # 5

12 # 7

15 # 2

16# 1

16 # 4

16 # 5

19 # 2 A continuous function on a compact set is uniformly continuous.

19 # 4

20 # 1

20 # 2

20 # 3

20 # 5

22 # 2

22 # 3

22 # 4

22 # 5

Did I miss anything? If so, please add it and let the rest of us know.

cpt / DD 2. A compact subset of a metric space is bounded. (Prove this.)
Hint : use the finite cover.
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Real Analysis

A note on the below: a sequence consists of infinitely many terms. Two examples of sequences
are 1, 2, 3, . . . and π, π, π, . . .: note that a sequence may have many repeated terms.

On the other hand, in a set, each element is unique, so for example {1, 2}∪{2, 3} = {1, 2, 3}
and the “2” only appears once. Thus for the two examples of sequences given above, the
set of their elements has infinitely many elements {1, 2, 3, . . .} in the first case, and only one
element {π} in the second.

The following three results follow from the Proposition in Page 20 # 3.

cpt / DD 3. Corollary 1. Every sequence of points in a compact metric space has a convergent
subsequence.

Proof. We will prove the result by explicitly constructing the convergent subsequence. Let
pn be a sequence in a compact metric space E. There are two cases, depending on whether
the number of different points in the sequence is finite or infinite. If {p1, p2, p3, . . .} is a finite
set, then there must be some point p that occurs infinitely many times.

(a) Finish the proof of the finite case.

On the other hand, if {p1, p2, p3, . . .} is an infinite set, then it must have at least one ac-
cumulation point p, because . Choose n1 so that
pn1 ∈ B1(p). Choose n2 > n1 so that pn2 ∈ B1/2(p), and so on. Note that for each k, there are
infinitely many points of the sequence in B1/k(p), because .

(Finish the argument.)

cpt / DD 4. Corollary 2. A compact metric space is complete.

Proof. We will show that a compact metric space is complete, by showing that every Cauchy
sequence converges to a point in the space. (Do this.)

Hint : combine Corollary 1 with another result.

cpt / DD 5. Corollary 3. A compact subset of a metric space is closed.

Proof. We will prove this by showing that every convergent sequence of points from a
compact subset converges to a point in the compact subset (using the sequence definition of
a closed set). (Do this.)

Hint : Combine Corollary 2 with other results.

Connected sets. A metric space E is connected if the only subsets of E that are both open
and closed are E and ø. A subset S ⊂ E is connected if it is connected when considered as
a metric space.

conn / DD 6. Write a definition of the word “connected” in the non-mathematical sense (for, say, a
subset of R2). Then explain why the above definition is equivalent to that usual meaning.

conn / DD 7. Give an example of a subset that is connected, and a subset that is not connected, in:

(a) R2 with the Euclidean metric, (b) R2 with the discrete metric.
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Sequences of functions. Let fn : E → E ′ and let p ∈ E. The sequence f1, f2, . . .
converges at p if f1(p), f2(p), . . . converges as a sequence of points in E ′. The sequence
f1, f2, . . . converges (on E) if it converges at every point in E. If f1, f2, . . . converges, we
define the limit function to be f(p) = lim

n→∞
fn(p) for each p ∈ E.

seq-fn / DD 1. For each of the following sequences of functions, explain why the sequence converges, and
give the limit function f :

(a) fn : R+ → R+ from Page 19 # 6

(b) fn : R+ → R+ from Page 20 # 4

The Heine-Borel Theorem says that, in Rn with the Euclidean metric, compact is equivalent
to closed and bounded. The following two problems further explore the connection between
compactness and closed-and-boundedness, for a general metric space.

cpt / DD 2. Consider the metric space consisting of the integers Z, with the discrete metric. Show
that this metric space is closed and bounded, but not compact.

cpt / DD 3. Prove that any compact subset of a metric space is closed and bounded.
Hint : put together several previous results.

Spaces of functions. Let C(E,E ′) be the set of all continuous functions from the metric
space E to the metric space E ′. Here C stands for continuous. It is a metric space under the
distance metric

D(f, g) = max{d ′(f(p), g(p)) : p ∈ E},

where as usual d ′ is the distance metric in E ′. Notice that for this metric to be well defined,
the maximum must exist and be finite.

sp-fn / DD 4. For each of the following, f, g : R→ R, find D(f, g). Hint : draw a picture

(a) f(x) = sin(x), g(x) = 0 (b) f(x) = x+ sin(x), g(x) = x

metric / DD 5. Prove that C(E,E ′) with the metric D is a metric space.

conn / FM 6. Give a counterexample to the following statement: If f : R→ R is continuous and S is
connected, then f−1(S) is connected.

Other bases. The decimal expansion of a number between 0 and 1 tells, in each decimal
place, the number of 1/101s, 1/102s, 1/103s, etc. needed to sum to the number, using digits
between 0 and 9. The binary expansion and ternary expansion do the same, with the number
of powers of 1/2 and 1/3, respectively, using digits {0, 1} and {0, 1, 2}, respectively.

Cantor / DD 7. Write 3/8, 7/16 and 1/3 in binary. Write 5/9, 8/27 and 1/2 in ternary.
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Sets that are connected and not connected. A subset S
of a metric space E is not connected if it can be separated by
two disjoint open sets U1 and U2 into two nonempty pieces
S ∩ U1 and S ∩ U2, such that S = (S ∩ U1) ∪ (S ∩ U2).
Otherwise, it is connected.

conn / FM 1. Prove, in two sentences, that any subset of R that contains
two distinct points a and b, and does not contain all of the
points between a and b, is not connected.

conn / DD 2. Prove that this definition of connected is equivalent to the one on Page 22.

conn / FM 3. Prove that an interval of real numbers is connected (perhaps by contradiction).

Cantor / DD 4. Show that the set of all possible numbers such as 0.010100011101010 . . ., with integer
part 0 and decimal digits 0 and 1, is uncountable. Hint : binary.

The Cantor set. Start with the closed unit interval [0, 1]. Remove the open middle third
(1/3, 2/3), leaving two closed intervals of length 1/3. Remove the open middle third of each
of these, leaving four closed intervals of length 1/9. Continue. At the nth step, you have a
set Sn consisting of 2n closed intervals each of length 1/3n. Let C =

⋂
Sn.

Cantor / DD 5. Draw Sn for n = 0, 1, 2, 3, 4. S0 should take up the entire width of your page.

Cantor / DD 6. Find the total length of Sn as a function of n, and the total length of C.

Note: In order to fit a one-semester course into one trimester, a few things needed to be
cut. I decided that we should definitely prove the Fundamental Theorem of Calculus, and
to make that happen I opted to cut the topic about convergence of sequences of functions,
and the related topics about when you can switch the limit and the integral, and when
the limit of a sequence of continuous functions is continuous, and the notion of “uniformly
Cauchy.” Please take a second course in real analysis in college! I have moved this sequence
of problems to the Appendix, which we will do if we have extra time.
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The following result is very important for finding maxima and minima in calculus.

cpt / DD 1. Theorem. The continuous image of a compact
set is compact.
Proof. Let f : E → E ′ be a continuous function,
and let E be compact. We will show that its image
f(E) is compact by showing that, given any open
cover of f(E), we can construct a finite subcover.
Let {Uα} be an open cover of f(E). Since each set
U in {Uα} is open in E ′, each f−1(U) is open in E,
because .

Consider the set S = {f−1(U) : U ∈ Uα}. We claim
that S is an open cover of E. To see this, take any
p ∈ E. Then f(p) ∈ U for some U ∈ Uα, so p ∈ f−1(U), so S covers E. Since E is
compact, there is a finite subcover of S covering E, i.e. E ⊂ f−1(U1) ∪ · · · ∪ f−1(Uk). Thus
f(E) ⊂ U1 ∪ · · · ∪ Uk.
So for any open cover Uα of f(E), we have constructed a finite subcover ,
so f(E) is compact, as desired.

conn / DD 2. Proposition. Let {Si} be a collection of connected subsets
of a metric space E. Suppose that there exists k such that, for

all i, Si ∩ Sk 6= ø. Then
⋃
i

Si is connected.

(a) The picture shows an example in the case E = R2. What
is k in this case?

(b) Proof. We will show that ∪Si is connected using a proof
by contradiction. Suppose that ∪Si is not connected. Then
∪Si is contained in the union of two disjoint open sets A,B.
We will show that A or B must be empty. (Do this.)

Hint : write Sk = (Sk ∩ A) ∪ (Sk ∩B) and use the fact that Sk is connected.

conn / FM 3. Theorem. The continuous image of a connected set is connected.
More formally: Let f : E → E ′ be continuous. If E is connected, then f(E) is connected.

(Prove this.)

Hint : A one-sentence proof by contradiction is possible.
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seq / DD 4. Theorem. A bounded, monotone sequence of real numbers is convergent.

We will prove this for an increasing sequence; the proof for a decreasing sequence is similar.

Proof. Let a = sup{ak}. We will show that lim
k→∞

ak = a. Given any ε > 0, we need to show

that there exists N such that, for any n > N , |a − an| < ε. Now a − ε is too small to be a
lower bound for {ak}, because .
So there exists N such that aN > a− ε, because .
So we know that ai > a−ε for all i > N , because .
Thus a− ε < ai < a+ ε for all i > N . (Finish the proof.)

seq / DD

5. Consider R with the metric d(p, q) =

{
0 if p = q

1 if p 6= q.
. Does the sequence an = 1/n have

a limit in this metric space? (In other words, does the previous Theorem apply?)

Cantor / DD 6. Refer to the construction of the Cantor set C given on page 26.

(a) Explain why the set S1 consists of all numbers between 0 and 1 that have either a 0 or
a 2 (but not a 1) as their first digit after the “decimal” point, when expressed in ternary.

(b) Explain why C consists of all of the possible numbers expressed in ternary as infinite
strings of 0s and 2s, e.g. 0.020200202202222. . . .
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cpt / DD 1. Corollary to Page 25 # 1. The continuous image of a compact set is bounded.

More formally: If f : E → E ′ is continuous, and E is compact, then f is bounded.

(Prove this.)

cpt / DD 2. (Continuation) Show that it is necessary for E to be compact, by giving an example of
an unbounded continuous function on a non-compact metric space.
If your example is a function from R to R, for extra style points give one example where
the space is not closed, and one where the space is not bounded.

Intermediate Value Theorem: Let f : E → R be continuous, let E be connected, and
let p1, p2 ∈ E. Then f attains all values between f(p1) and f(p2).

IVT / DD 3. Prove the Intermediate Value Theorem. Hint : put together previous results.

cpt / FM 4. Proposition. Any closed subset of a compact set is compact.

Proof. Let X be a compact subset of a metric space E, and let S be a closed subset of X. We
will show that S is compact, by showing that . Let
{Gα} be an open cover of S. We also know that SC is open, because .
Then the union {Gα}∪SC give an open cover of .
Since X is compact. . . (Complete the proof.)

bound / DD 5. Proposition. A nonempty closed subset of R has a greatest element if it is bounded
from above, and has a least element if it is bounded from below.

Proof. We will show that a nonempty closed subset S of R has a greatest element if it is
bounded from above; the proof of the second part is similar.

Let a = sup S. If a ∈ S, we are done, because .

If a /∈ S, then a ∈ SC . Since SC is open, there exists r > 0 such that Br(a) ⊂ SC . Thus, no
element of S is greater than a− r. (Finish the proof.)

Cantor / DD 6. (Rick Parris) Consider again the Cantor set C. Show that 1/4 ∈ C, in two ways:

(a) Using the ternary representation of points in C, and

(b) using the self-similarity, or fractal structure, of C, to show that 1/4 is never removed.
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.Partitions. Let a, b ∈ R with a < b. A partition of [a, b]
is given by a (finite) sequence x0, x1, x2, . . . , xN such that
a = x0 < x1 < · · · < xN = b. The width of the partition is
max{xi − xi−1 : i = 1, . . . , N}.

part / DD 7. If you partition [a, b] using the partition x0, x1, x2, . . . , xN , how many subintervals of the
form [xi−1, xi] do you get? If they are equally spaced, what is the length of each?

.Riemann sums. A Riemann sum for f on [a, b], corresponding to
the partition x0, x1, x2, . . . , xN of [a, b], is

N∑
i=1

f(x′i) · (xi − xi−1),

where x′i ∈ [xi−1, xi] is a representative point in each subinterval.

Riem / DD 8. Compute the Riemann sum for f(x) = x2 on the interval [0, 2],
with N = 4. Use a partition, and a representative point in each
interval, that no one else in the class will think of. You are welcome
to use a calculator for the computations. In the picture, draw in
your partition, including the rectangles whose areas sum up to your
Riemann sum value.
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Differentiability. In our continuing quest to put all of calculus on a rigorous mathematical
basis, we will now study differentiability. Let U ⊂ R be an open set, let f : U → R, and let
x0 ∈ U . We say that f is differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0
exists.

We denote this limit by f ′(x0) and call it the derivative of f at x0.

diff / DD 1. Answer these questions about the definition of differentiability.

(a) Why must the domain and range of f be real numbers?

(b) Why must the domain U be open?

Integrability. Let a, b ∈ R with a < b, and let f : [a, b]→ R. Then f is Riemann integrable
on [a, b] if there exists a number A such that, for any ε > 0, there exists δ such that, if we
take any partition of width δ, and if we take S to be any Riemann sum value associated to
such a partition, then |A− S| < ε. In this case, we say that

A =

∫ b

a

f(x) dx

is the Riemann integral of f .

You can think of integrable functions from R → R as those that are bounded, and are not
discontinuous everywhere on an interval.

Riem / DD

2. Draw a picture of the function defined on [0, 3] by: f(x) =

{
0 if x ∈ [0, 1] ∪ [2, 3]

1 if x ∈ (1, 2)
.

(a) Find a partition of [0, 3] of width ≤ 1/4, and draw it on the interval [0, 3].

Find the value of each of the following Riemann sums, when the representative point x′i:

(b) is the left endpoint of each interval;

(c) yields the maximum value of f on its interval;

(d) yields the minimum value of f on its interval.

Refer to the definition of Riemann integrability, given above.

(e) For ε = 1/10, can you find an A and a δ that satisfy the definition?

(f) What are the maximum and minimum values of a Riemann sum associated to a partition
of width 1/4? And what are the maximum and minimum values for width 1/10?

(g) Is f(x) Riemann integrable?

(h) Explain why, if the difference between the maximum and minimum Riemann sum values
for a function f approaches 0 as the partition width approaches 0, then f is integrable.

Cantor / FM 3. Prove that there is a bijection between elements of the Cantor set (Hint : ternary) and
elements of the set [0, 1] (Hint : binary). Are you surprised?!
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MVT / FM 1. Proposition (finding critical points). If a real-valued function is differentiable at an
interior minimum or maximum point, then its derivative is 0 there.

This fact is the basis for finding maxima and minima in calculus. We will also need it to
prove the Mean Value Theorem, which is likewise essential for calculus.

Proof. We will show that, for an open set U ⊂ R and a function f : U → R, if f attains a
maximum or minimum at x0 ∈ U , and if f is differentiable at x0, then f ′(x0) = 0. We will
prove the result directly, showing that at a maximum or minimum, the limit is 0.

Since f is differentiable, we know that lim
x→x0

f(x)− f(x0)

x− x0
exists.

Suppose that x0 is a local minimum. For x near x0, the numerator in the definition is non-
negative, because . If x0 > x, the denominator is
positive, and thus f ′(x) is a limit of non-negative numbers, because .
For x0 < x, the denominator is negative, and thus similarly f ′(x) is a limit of non-positive
numbers. Therefore, the only possibility is f ′(x) = 0, because .
The proof when x0 is a local maximum is similar.

Cantor / DD 2. The Cantor function. Define fC : [0, 1]→ [0, 1]
as follows:

First, on the complement of the Cantor set, CC , define
fC as follows: On the open middle third of the inter-
val, f is 1/2. On the open middle thirds of the two
remaining intervals, f is 1/4 and 3/4, respectively.
On the open middle thirds of the remaining intervals,
f is 1/8, 3/8, 5/8 and 7/8, respectively. Continue in
this manner to assign a value to every point in CC .

Then, on C, define fC as follows: For any point p ∈ C,
express p in ternary as a decimal point followed by an
infinite string of 0s and 2s. Divide this number by 2
to yield a decimal point followed by an infinite string
of 0s and 1s, and interpret it in binary; this is fC(p).

(a) Make a sketch of the graph of fC on the axes to the right.

(b) Consider the function fC : C→ [0, 1], which is just the Cantor function restricted to the
Cantor set. Is it onto? Is it continuous?

Spring 2023 28a Diana Davis



Real Analysis

bound / DD 3. A nonempty bounded subset of R has an infimum and a supremum. (Prove this)

Riem / DD 4. Prove, from the definition, that f(x) = 3 is Riemann integrable on [0, 1].

Riem / DD 5. Prove, using the definition of the Riemann integral, that∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Hint : Such a proof will require ε (probably ε/2), δ (probably δ = min{δ1, δ2}), and a chain of

inequalities with summations. Use the sum
∫ b
a
(f + g) dx as the number A in the definition.

MVT / DD 6. Corollary to Page 25 # 1. A continuous real-valued function on a nonempty compact
metric space attains a maximum and minimum. (This is essential for calculus!)

Proof. Let f : E → R be a continuous function on a nonempty compact metric space E.
Then f(E) is closed and bounded because and
nonempty because . A nonempty bounded set has
an infimum a and a supremum b, by Page # . Furthermore, a and b are accumulation
points of f(E), so there are sequences in f(E) converging to a and b. Since f(E) is closed,
the limits of these sequences are in f(E), because .
Thus a, b ∈ f(E), so f(E) attains a maximum and minimum.
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MVT / DD 1. Rolle’s Theorem. Suppose
that f : [a, b]→ R is continuous on
[a, b] and differentiable on (a, b),
and that f(a) = f(b). Then for
some c ∈ (a, b), f ′(c) = 0.

Rolle’s Theorem is the basis for the
Mean Value Theorem, which we
will see is very important in calculus.

Proof. We know that f attains a maximum and a minimum on [a, b], by
. If the maximum occurs at some point p on the interior, then

by f ′(p) = 0, so let c = p and we are done. The
same argument holds for the minimum. If neither the maximum nor the minimum occurs
on the interior, then they both occur at the endpoints, so. . . (Finish the proof).

2. Proposition. If f is differentiable at x0, then f is continuous at x0.

Proof. We will show that, if U is an open subset of R, and f : U → R is differentiable at
x0 ∈ U , then f is continuous at x0.

Since f is differentiable at x0, we know from Page # that for any ε > 0, we can choose
δ > 0 so that

|x− x0| < δ =⇒ |f(x)− f(x0)− f ′(x0)(x− x0)| < ε|x− x0|.

Thus, |x− x0| < δ implies

|f(x)− f(x0)| ≤ |f(x)− f(x0)− f ′(x0)(x− x0)|+ |f ′(x0)(x− x0)| (1)

≤ (ε+ |f ′(x0)|) · |x− x0|. (2)

(a) Justify each of the inequalities (1) and (2).

Now choose δ = min

{
δ, ε
ε+ |f ′(x0)|

}
.

(b) Use the above to show that |x− x0| < δ =⇒ |f(x)− f(x0)| < ε, as desired.

(c) Explain why we used the symbols δ and ε at the beginning instead of δ and ε.

Riem / FM

3. Compute directly from the definition that

∫ 1

0

x2 dx = 1/3, as follows:

(a) Divide [0, 1] into n subintervals of width 1/n. Show that, if we evaluate the following
Riemann sum at the right endpoint of each interval, the result is

n∑
k=1

f(x) 1
n

= 1
n3

n∑
k=1

k2.

(b) Use the formula
n∑
k=1

k2 =
n(2n+ 1)(n+ 1)

6
and take the limit as n→∞.
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Riem / MR 4. Show that, if f : [a, b]→ R is integrable, and f(x) ≥ 0 for all x ∈ [a, b], then∫ b

a

f(x) dx ≥ 0.

Riem / DD 5. The characteristic function of the rationals.
Consider the function defined on [0, 1] by:

χQ(x) =

{
1 if x ∈ Q

0 if x /∈ Q
.

For a partition of [0, 1] of width 1/4, find the value of
each of the following Riemann sums, when the repre-
sentative point x′i:

(a) is the left endpoint of each interval;

(b) yields the maximum value of χQ on its interval;

(c) yields the minimum value of χQ on its interval.

(d) Find a partition of [0, 1] of width ≤ 1/10, and repeat parts (b)-(d).

(e) For ε = 1/2, can you find an A and a δ that satisfy the definition of Riemann integra-
bility? How about for ε = 1/10?

(f) What are the maximum and minimum values of a Riemann sum associated to a partition
of width 1/4? How about for width 1/10?

(g) Is it possible to get a value of 0.123456789 for a Riemann sum of χQ(x) on [0, 1]?
Describe all possible values that you can get as a Riemann sum.

(h) Is χQ(x) Riemann integrable on [0, 1]?
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Riem / MR 1. Show that, if f, g : [a, b]→ R are integrable, and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Hint : You can prove this from scratch, but it is easier to apply a previous result.

MVT / DD 2. The hypothesis for the preceding Rolle’s Theorem, and for the upcoming Mean Value
Theorem, is that f is continuous on [a, b] and differentiable on (a, b).

(a) Why did we need f to be continuous on [a, b] instead of just (a, b)?

(b) Why don’t we ask for f to be differentiable on [a, b] instead of just on (a, b)?

MVT / DD 3. The picture on the right is meant to illustrate the
Mean Value Theorem. On the same axes, sketch the
function g(x) = f(x)− x, under the assumption that
f(b) = b.

MVT / DD 4. Mean Value Theorem. Suppose that
f : [a, b]→ R is continuous on [a, b] and differentiable
on (a, b). Then for some c ∈ (a, b),

f ′(c) =
f(b)− f(a)

b− a
.

The MVT is essentially the same as Rolle’s Theorem,
just “tilted,” or perhaps we could call it “vertically sheared.”

Proof. By horizontal scaling and translation, we may assume that [a, b] = [0, 1], because
. If f(0) = f(1), then we are done, because
. If not, then by vertical scaling and translation,

we may assume that f(0) = 0 and f(1) = 1, because .
Let g(x) = f(x)− x. (Finish the proof)

MVT / DD 5. Check the Mean Value Theorem for the function f(x) = x3 on [0, 1]. (This means:
determine a, b, f(a), and f(b) in this case, and find the c that satisfies the equation above.)

FTC / FM

6. Show that, if |f(x)| ≤M for all x ∈ [a, b], then

∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤M(b− a).

Hint : You can do this from scratch, but it is easier to use a previous result.

7. Read the following story. Ponder its wisdom.
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Law & Order: MVT, by Evelyn Lamb, in Scientific American, Oct 13, 2019:

In the criminal justice system, velocity-based offenses are considered especially unimportant. In
New York, the dedicated detectives who investigate these minor misdemeanors are members of an
elite squad known as the Moving Violation Team. These are their stories.

[Open with aerial shot of the New York State Thruway. It is a beautiful fall day. Traffic is on the
heavy side but moving freely. Zero in on a car passing below a set of cameras on the road.]

*DUN DUN*

[One week later, in Syracuse, NY. MICHELLE ROLLINS is bringing the mail inside. Their wife
CARLA GOFF is sitting on the couch.]

MICHELLE ROLLINS: What’s this? [opens envelope] Really? A ticket? But I didn’t see any cops
when I was driving last week.

CARLA GOFF: They have those cameras mounted above the roads now.

MICHELLE ROLLINS: I saw those. They were right near the toll plazas. I was never speeding
when I was near one of the cameras. This is garbage! They can’t prove I was speeding.

[A few days later, in the Moving Violation Team office. Detective DOROTHY BERNSTEIN is
going through papers, filing some and tossing others. Her colleague EDDIE WILLIAMS looks on.]

DOROTHY BERNSTEIN: We’ve got another driver contesting the ticket.

EDDIE WILLIAMS: They just don’t stop, do they? They have no idea what they’re in for.

*DUN DUN*

[Inside the courtroom. Judge CHARLOTTE SCOTT presiding. Another *DUN DUN* for good
measure.]

BAILIFF: Please rise.

CHARLOTTE SCOTT: You may be seated. What do we have today? Ah, a contested speeding
ticket. Plaintiff, opening statement, please.

MICHELLE ROLLINS: Your honor, I received a speeding ticket, but I was never pulled over.

DOROTHY BERNSTEIN: Are you familiar with the cameras we have to record license plates for
tolls?

MICHELLE ROLLINS: Sure.

DOROTHY BERNSTEIN: They also record your location and time.

MICHELLE ROLLINS: Of course, but I don’t see how that’s relevant.

DOROTHY BERNSTEIN: There are multiple cameras. We recorded you driving here, at mile
marker 192, [holds up blurry photo of a car passing under a camera on the road] at 12:47 pm on
October 12. Then we took this photograph of you at mile marker 148. Can you read the timestamp
on that photograph for me?

MICHELLE ROLLINS: Are these theatrics really necessary?

CHARLOTTE SCOTT: Just answer the question.

MICHELLE ROLLINS: It says [squints] 1:21 pm.

DOROTHY BERNSTEIN: In 34 minutes, you traveled 44 miles. Is that correct?

MICHELLE ROLLINS: Yes.

DOROTHY BERNSTEIN: The speed limit for this entire portion of the highway is 65 miles per
hour. Would you agree that your average speed was above 65 miles per hour?

MICHELLE ROLLINS: [muttering] 68 minutes, 88 miles, 60 minutes, 65 miles, plus 8 is 73, the
extra is less than a mile. . . [regular voice] Yes, it was.
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DOROTHY BERNSTEIN: As a matter of fact, it was 77.65 miles per hour.

MICHELLE ROLLINS: But that doesn’t prove anything. The speed limit is not an average speed
limit. You have to show I was traveling above 65 miles per hour at some point.

DOROTHY BERNSTEIN: Mx. Rollins, are you familiar with the Mean Value Theorem?

*DUN DUN*

[But no scene change]

MICHELLE ROLLINS: Yeah, I took calculus. That’s the theorem that says that if your average
rate of change between two endpoints is M, then your instantaneous rate of change at some point
between two endpoints must have been M, if –

CHARLOTTE SCOTT: [bangs gavel] Case closed!

MICHELLE ROLLINS: Wait a minute, I didn’t finish! That’s if the function is a continuous
function on the whole closed interval and differentiable on the open interval!

CHARLOTTE SCOTT: Are you saying the function describing your position was somewhere dis-
continuous or non-differentiable?

MICHELLE ROLLINS: I didn’t say that, but, with all due respect, it’s not my responsibility to
prove they weren’t but Detective Bernstein’s to prove they were. Detective Bernstein, can you
show that time and position are continuous, rather than discrete, quantities?

DOROTHY BERNSTEIN: Oh, please! Your honor, all widely-used modern and classical physi-
cal theories that are used to make predictions about real-world behavior use the assumption of
continuous time. If time is not continuous, it is close enough on a practical level to assume such.

MICHELLE ROLLINS: By the same token, though, all numbers can be practically represented –
to any degree of accuracy we desire – by rational numbers, can they not?

DOROTHY BERNSTEIN: Objection, your honor, irrelevant.

CHARLOTTE SCOTT: Mx. Rollins, where are you going with this?

MICHELLE ROLLINS: I promise it is highly relevant. At all points of my journey, we can assume
the time and my position were rational numbers, using Detective Bernstein’s “close enough on a
practical level” criterion. Therefore my position was a function of time defined on the rational
numbers. The mean value theorem does not hold for functions defined over the rationals! Take, for
example, the function that is 0 for all rational numbers q such that q2 is less than 2 and 1 for all
rational numbers whose squares are larger than 2. The average value of this continuous function
on the [0, 2] interval is strictly between 0 and 1, but the function only takes the values 0 and 1.

[A gasp ripples through the courtroom, which somehow is full of an audience of people despite the
fact that this is a very boring traffic case.]

CHARLOTTE SCOTT: [bangs gavel] Order! Order! Detective Bernstein?

DOROTHY BERNSTEIN: [Stammering] Wait – I – what – You can’t be serious!

CHARLOTTE SCOTT: If the detective cannot counter Mx. Rollins’ argument, I have no choice
but to dismiss the ticket.

[DOROTHY BERNSTEIN sinks into her chair. EDDIE WILLIAMS brings her a cup of coffee.
MICHELLE ROLLINS leaves the courtroom to a flock of reporters outside.]

DOROTHY BERNSTEIN: Thanks, Eddie. I can’t believe they’re getting away with it.

EDDIE WILLIAMS: We can only hope the next one hasn’t thought so deeply about the mean
value property.

*DUN DUN*

Law & Order: MVT, by Evelyn Lamb, in Scientific American, Oct 13, 2019.
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Fundamental Theorem of Calculus. Let f be a continuous function on [a, b].

I. d
db

∫ b

a

f(x) dx = f(b).

II. If there exists F such that f(x) = F ′(x), then

∫ b

a

f(x) dx = F (x)
∣∣∣x=b
x=a

= F (b)− F (a).

FTC / FM 1. Proof of I. We have

d
db

∫ b

a

f(x) dx = lim
h→0

∫ b+h
a

f(x) dx−
∫ b
a
f(x) dx

h
(1)

=

∫ b+h
b

f(x) dx

h
. (2)

(a) Justify equation (1) .

For (2), we use the fact that if f is integrable on [a, c] and a < b < c, then
∫ c
a
f =

∫ b
a
f+
∫ c
b
f ,

whose proof is straightforward; we omit it here. Now if h > 0, we have

min
|x−b|≤|h|

f(x) ≤
∫ b+h
b

f(x) dx

h
≤ max
|x−b|≤|h|

f(x), (3)

by .

(c) Justify why equation (3) also holds when h < 0.

(d) Explain why, as h→ 0, the left and right sides of (3) both approach f(b).

(e) Finish the proof, that

d
db

∫ b

a

f(x) dx =

∫ b+h
b

f(x) dx

h
= f(b).

FTC / FM 2. Proof of II. By (I), we have

d
db

(
F (b)−

∫ b

a

f(x) dx

)
= F ′(b)− f(b) = f(b)− f(b) = 0.

(a) Justify the equalities above.

By , there is a constant C such that

d
db

(
F (b)−

∫ b

a

f(x) dx

)
= 0 =⇒ F (b)−

∫ b

a

f(x) dx = C.

(c) Finish the proof by setting b = a and deducing the desired statement.

FTC / FM 3. Let F (x) =
∫ x
0
e−t

2
dt. Compute F ′(x) and F ′(0).
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Riem / AJ 4. Theorem. Every continuous, real-valued function f is integrable on [a, b].

Proof. We will show that any sequence of Riemann sums whose partition widths converge to
0 is Cauchy. This will prove the result, because the sequence of Riemann sums is a Cauchy se-
quence of real numbers, which converges because .

The limit it converges to is then the Riemann integral

∫ b

a

f(x) dx.

We know that f is uniformly continuous, because .
So, given any ε > 0, there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε. (1)

Consider two Riemann sums, each with width less than δ/2. Their subintervals intersect (if
we break up [a, b] at all the places where either of the partitions has a subinterval break) in
smaller subintervals of width also less than δ/2, because .
On each subinterval, the values f(x) from the two Riemann sums S1 and S2 come from
points at distance at most δ/2 from a point in the intersection, and hence at distance at
most δ from each other, because . By (1), these
values differ by at most ε. Let x1i and x2i be the representative values chosen for S1 and
S2, respectively. Summing over the smaller subintervals, we see that the Riemann sums can
differ by at most∣∣∣∑(

f(x1i )− f(x2i )
)
(xi − xi−1)

∣∣∣ ≤∑∣∣f(x1i )− f(x2i )
∣∣ (xi − xi−1) (2)

≤
∑

ε(xi − xi−1) (3)

= ε
∑

(xi − xi−1) (4)

= ε(b− a). (5)

Justify the lines (2) (3) (4) (5).

Since b − a is finite, we can make ε(b − a) as small as we like, so the sequence is Cauchy,
proving the result.
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Choose some of the following 10 problems to complete: those that interest you

The following result is equivalent to the Mean Value Theorem (MVT). In words, it says that
“how a function varies on an interval depends on the length of the interval, multiplied by
some bound on the derivative in that interval.”

FTC / MR 1. Corollary 1 to the MVT. Suppose that f : [a, b]→ R is continuous on [a, b] and
differentiable on (a, b). Then for some c ∈ (a, b), f(b)− f(a) = f ′(c) · (b− a). (Prove this.)

The following result is the reason why we need the Mean Value Theorem to do calculus.

FTC / FM 2. Corollary 2 to the MVT. On an open interval where f ′ is always 0, f is constant.
(Prove this.)

—————————————–

Prove the following:

FTC / MR 3. Corollary 1 to the FTC. A continuous function has an antiderivative.

More precisely: If f is a continuous, real-valued function on an open interval U ⊂ R, then
there exists a real-valued function F on U such that F ′(x) = f(x).

FTC / MR 4. Corollary 2 to the FTC. Antiderivatives differ by a constant.

More precisely:If F and G are both antiderivatives of f , then F −G = C for some constant
C.

FTC / MR

5. Corollary 3 to the FTC. If F is the antiderivative for f , then

∫ b

a

f(x) dx = F (b)−F (a).

More precisely: If U ⊂ R is open and F : U → R has continuous derivative f , then for

a, b ∈ U ,

∫ b

a

f(x) dx = F (b)− F (a).

—————————————–

Fun with the Cantor function.

6. Recall the Cantor function fC, defined on Page 28. It is a non-constant, continuous
function on [0, 1], with derivative 0 everywhere except on the Cantor set, a set that has
measure (total length) 0. Does fC violate Corollary 2 to the MVT? Explain why or why not.

Cantor / DD 7. (Brian Jenike) Where is fC continuous? Prove your answer correct.

Cantor / DD 8. (Hari Srinivasulu) Where is fC differentiable? Prove your answer correct.

Cantor / DD 9. Let χC be the characteristic function of the Cantor set: It is 1 on C, and 0 otherwise.

Compute

∫ 1

0

χC dx.

Hint : Given ε > 0, choose n such that (2/3)n < ε and δ < 1/3n, and use the partition of
[0, 1] determined by the intervals of the Cantor set in the nth step of construction.

Cantor / DD

10. Recall that you sketched the Cantor function fC(x) on Page 28. Find

∫ 1

0

fC(x) dx.

Hint : refer to your picture
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Appendix: Sequences of functions

I omitted these problems so that we would be able to prove the Fundamental Theorem of
Calculus. If you would like to do them, please do! Note that these problems may use results
proved on earlier pages.

seq-fn / DD 1. Say whether the following sequences (also used in the fol-
lowing problems) converge, and if so, to what limit function:

(a) fn : R→ R given by fn(x) = x/n.

(b) gn : [0, 1]→ [0, 1] given by gn(x) = xn.

(c) hn : R→ R given by

hn(x) = x− x3

3!
+ x5

5!
− · · ·+ (−1)n−1 x2n−1

(2n− 1)!
.

It is a bit disturbing that, in some cases that we have seen, a
limit of continuous functions is not continuous. The problem
is that although each fn → f at each point, for some func-
tions, some points take longer to converge than others. We
can express this difference precisely, as the difference between
pointwise convergence (now) and uniform convergence (later):

Pointwise convergence. A sequence of functions fn : E → E ′

converges pointwise to f on E if, for every x ∈ E, and given
any ε > 0, there exists an N such that

n > N =⇒ d′(fn(x), f(x)) < ε.

Notice that in this definition, N depends on both x and ε.

seq-fn / DD 2. For the given x and ε, find N such that n > N =⇒ |fn(x)− f(x)| < ε.

(a) x = 1/2, ε = 0.01 (b) x = 0.9, ε = 0.01

seq-fn / DD 3. Repeat the above problem for gn(x) with g(x).
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Uniform convergence. A sequence of functions fn : E → E ′ converges uniformly to f on
E if, given any ε > 0, there exists an N such that

n > N =⇒ d′(fn(x), f(x)) < ε

for all x ∈ E.

seq-fn / DD 4. Explain the difference between the def-
inition of pointwise convergence and the
definition of uniform convergence. In Page
A1 # 1, which functions converge uniformly?

We have previously seen that some limits of continuous functions are not continuous. For
the limit to be continuous, uniform convergence is exactly what we need.

seq-fn / FM 5. Theorem. A uniform limit of continuous functions is continuous.

Proof. We will show that, for a uniformly convergent sequence of functions f1, f2, . . ., with
fn : E → E ′ for each n, lim

n→∞
fn(x) = f(x) is continuous. More precisely, we will show that,

given any ε > 0, we can find δ such that (a) . The idea is that because the
sequence of functions converges uniformly, we can handle all points x near any particular
point p by looking at one fn (specifically fN+1) that is uniformly near the limit function f .

Given any ε > 0, choose N such that for all x ∈ E,

n > N =⇒ d(fn(x), f(x)) < ε/3. (6)

We can find such an N because (b) .

We know that fN+1 is continuous because (c) . Since fN+1 is
continuous, given any p ∈ E, we can choose δ > 0 such that

d(x, p) < δ =⇒ d′(fN+1(x)− fN+1(p)) < ε/3. (7)

We can find such a δ because (d) . So if d(x, p) < δ, we have

d′(f(x), f(p)) ≤ d′(f(x), fN+1(x)) + d′(fN+1(x), fN+1(p)) + d′(fN+1(p), f(p))

< ε/3 + ε/3 + ε/3 = ε,

as desired. Here the inequality in the first line is true by (e) .
On the right hand side, the first term is less than ε/3 by equation (f) , the
second term is less than ε/3 by equation (g) , and the third term is less than
ε/3 by equation (h) .
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For a sequence of points, we wanted a way to discuss convergence without knowing what the
limit is. This notion is “Cauchy” − for any ε > 0, there exists N such that n,m > N =⇒
d(an, am) < ε. We would like to have an analogous way to talk about a sequence of functions
converging, without knowing what the limiting function is. This notion is uniformly Cauchy,
combining the notion of the sequence of functions converging uniformly, with the notion of
the function values being a Cauchy sequence at each point. The definition of uniformly
Cauchy is in the beginning of the proof below.

Cauchy / DD 6. Theorem. A sequence of functions mapping to a complete metric space is uniformly
convergent if and only if the sequence of functions is uniformly Cauchy.

Proof. We will prove that, for a sequence of functions fn : E → E ′, if E ′ is complete, then
fn is uniformly convergent if and only if, for any ε > 0, there exists N such that

n,m > N =⇒ d′(fn(p), fm(p)) < ε for all p ∈ E,

or in other words, the sequence of fn is uniformly Cauchy.

Proof. (⇒) We will assume that fn → f uniformly, and show that fn is uniformly Cauchy.

Suppose that fn converges uniformly to f . Then, given ε > 0, there exists N > 0 such that
d′(f(x), fn(x)) < ε/2 for all n > N and all x ∈ E, because (a) .
So for all n,m > N , we have

d′(fn(x), fm(x)) ≤ d′(fn(x), f(x)) + d′(f(x), fm(x))

< ε/2 + ε/2 = ε,

as desired. Here the inequality in the first line is true by (b) .
Each of the terms on the right hand side of the first line are less than ε/2 because (c) .

(⇐) We will assume that fn is uniformly Cauchy, and show that fn → f uniformly.

Suppose that the sequence fn is uniformly Cauchy. Then for every x ∈ E, and for every
n, {fn(x)} is a Cauchy sequence in E ′, because (d) . Since E ′ is complete,
{fn(x)} converges to a point in E ′ because (e) , and we will call
this point f(x). This shows that fn → f pointwise. Now we need to show that fn → f
uniformly.

Given any ε > 0, choose N such that

n,m > N =⇒ d′(fn(x), fm(x)) < ε/2 for all x ∈ E. (1)

We can find such an N because (f) . We want to show that, for
any n > N and any x ∈ E, d′(fn(x), f(x)) < ε.

(continued on next page)
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(continued)

Fix a particular such choice of n and x. Now look at the ball Bε/2(fn(x)). The sequence
f1(x), f2(x), . . . eventually enters this ball and stays within it, by (g) . So

f(x) ∈ Bε/2(fn(x)), because (h) . Here we use the closure of
the ball because (i) . Thus,

d′(fn(x), f(x)) ≤ ε/2 < ε,

as desired. Here the first inequality is true because (j) .

seq-fn / FM 7. Let fn(x) = x/n.

(a) Prove that fn(x)→ f(x) = 0 uniformly on [0, 1].

(b) Does fn(x)→ 0 uniformly on R?

Derivatives and integrals with sequences of functions.

switch / DD 8. Let fn(x) = xn on [0, 1] (we have seen this before).

(a) Find f(x) = lim
n→∞

fn(x). Does fn → f uniformly on [0, 1]?

(b) Find
∫ 1

0
fn(x) dx, as a function of n, and

∫ 1

0
f(x) dx.

(c) Is lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

lim
n→∞

fn(x) dx true in this case?

uni-con / FM 9. (For fun.) Consider the statement: If fn → f uniformly, then fn
2 → f 2 uniformly.

(a) Give a counterexample to the statement.

(b) Add a simple hypothesis, and prove the revised statement.

switch / DD

10.Let gn(x) =


0 if x = 0

n if 0 ≤ x ≤ 1/n

0 if 1/n < x < 1

on [0, 1]. Repeat Page A4 # 8 for this function.

switch / DD 11.Make a conjecture: For a sequence of functions fn on [a, b], when can you switch the
limit and the integral? We will prove a Theorem about this on the next page.

We have seen that for fn(x) = xn on [0, 1], lim
∫
fn =

∫
lim fn, and just above we saw an

example of a sequence of functions where the two are not equal. You may wonder, based on
the above examples, when you can switch the limit and the integral. The following Theorem
tells you that, as usual, uniform convergence is the key! See the next Theorem:
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switch / AJ 12.Theorem. For a uniformly convergent sequence of continuous functions fn on [a, b], you
can switch the limit and the integral:

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx.

Proof. Given ε > 0, choose N such that, for all x ∈ [a, b], n > N =⇒ |fn(x) − f(x)| < ε.
We can do this because . Then∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(fn(x)− f(x)) dx

∣∣∣∣ (1)

≤
∣∣∣∣∫ b

a

|fn(x)− f(x)| dx
∣∣∣∣ (2)

<

∫ b

a

ε dx = ε(b− a). (3)

Justify each of the three equalities/inequalities above. Then complete the proof.

switch / AJ 13.Give a counterexample to the above Theorem when each of the following hypotheses is
omitted: (a) fn are continuous, (b) fn converge uniformly.

switch / AJ 14.Write the converse of the above Theorem. Then prove it or give a counterexample.

switch / DD 15.The purpose of the “fill-in” theorems was to teach you how to read proofs: by fighting
with every single statement and justifying to yourself why it is true. Practice this skill by
reading the following theorem copied from Introduction to Analysis by Maxwell Rosenlicht
(p. 140). Work through the proof, figuring out why each part is true and how it all works.

Theorem. Let fn : U → R, where U ⊂ R is open. Suppose that f ′n is continuous for all n,
f ′n converges uniformly on U , and for some a ∈ U , {fn(a)} converges. Then

• lim fn exists,

• lim fn is differentiable, and

• (lim fn)′ = lim f ′n.

Proof. By the Fundamental Theorem of Calculus, we have that, for all x ∈ U and all n ∈ N,∫ x

a

f ′n(t) dt = fn(x)− fn(a).

Let lim
n→∞

f ′n = g. By the Theorem in Page 28 # 1, lim
n→∞

(fn(x)− fn(a)) exists for any x ∈ U ,

and equals
∫ x
a
g(t) dt. Since lim

n→∞
fn(a) exists, so does lim

n→∞
fn(x). Setting lim

n→∞
fn(x) = f(x)

we have
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f(x)− f(a) =

∫ x

a

g(t) dt

for each x ∈ U . A second use of the Fundamental Theorem of Calculus gives f ′ = g, which
is what was to be proved.

16.Theorem (Differentiating series of functions). For a sequence of functions that
converges somewhere, whose derivatives are continuous, and whose sequence of partial sums
is uniformly convergent, you can switch the derivative and the integral.

Proof. We’ll show that, if f ′k is continuous for all k, and
n∑
k=1

f ′k is uniformly convergent, and

n∑
k=1

fk(a) converges for some a, then lim
n→∞

s′n =

(
n∑
k=1

fk

)′
= f ′.

(a) Use previous work to show that, for a sequence of partial sums sn, if s′n is continuous,

and s′n is uniformly convergent, and {sn(a)} converges for some a, then
(

lim
n→∞

sn

)′
= lim

n→∞
s′n.

Now we have

lim
n→∞

s′n = lim
n→∞

(f1 + f2 + · · ·+ fn)′ (1)

= lim
n→∞

(f ′1 + f ′2 + · · ·+ f ′n) (2)

= lim
n→∞

n∑
k=1

f ′k (3)

=
∞∑
k=1

f ′k (4)

=
(

lim
n→∞

sn

)′
(5)

=

(
n∑
k=1

fk

)′
= f ′, (6)

as desired.

(Justify each of the six above equalities.)

17.Corollary. For a uniformly convergent series, you can differentiate term by term.

(Prove this.)

uni-con / DD 4. We have studied:

• continuous and uniformly continuous functions,

• pointwise convergent sequences of functions and uniformly convergent sequences of
functions, and

• uniformly Cauchy sequences of functions.

Look at all the definitions, and explain what “uniformly” means in general.
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