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The problems in this text

This style of problems is based on the curriculum at Phillips Exeter Academy, a private high
school in Exeter, NH. Most of the problems were written by Diana Davis, some based on her
previous book Lines in positive genus: An introduction to flat surfaces and some specifically
for this course; these are labeled in the margin as DD. Some problems are taken from
Geometry and Billiards by Serge Tabachnikov, labeled in the margin as ST. The dissection
problems are taken from Mostly Surfaces by Rich Schwartz, labeled in the margin as RS.
Problems from Phillips Exeter Academy’s materials are labeled PEA. Anyone is welcome to
use this text, and these problems, so long as you do not sell the result for profit. If you create
your own text using these problems, please give appropriate attribution, as I am doing here.

About the course

This course met three or four mornings a week for 50 minutes. The nine students in the
class did one page of homework in preparation for class, and posted their solutions online.
Class time consisted of discussing solutions. A proof course was the prerequisite.

To the Student

Contents: As you work through this book, you will discover that various topics about
geometry, surfaces and billiards have been integrated into a mathematical whole. There is
no Chapter 5, nor is there a section on ellipses. The curriculum is problem-centered, rather
than topic-centered. Techniques, definitions and theorems will become apparent as you work
through the problems, and you will need to keep appropriate notes for your records.

Your homework: Each page of this book contains the homework assignment for one night.
The first day of class, we will work on the problems on page 1, and your homework is page
2; on the second day of class, we will discuss the problems on page 2, and your homework
will be page 3, and so on for each of the 35 class days of the semester. You should plan to
spend one hour each night solving problems for this class.

Comments on problem-solving: Please approach each problem as an exploration. Read-
ing each question carefully is essential, especially since definitions, highlighted in italics, are
routinely inserted into the problem texts. It is important to make large, clear, accurate
diagrams, and paper models, whenever appropriate. Useful strategies to keep in mind are:
create an easier problem, work backwards, and recall a similar problem. It is important that
you work on each problem when assigned, since the questions you may have about a problem
will likely motivate class discussion the next day.

Problem-solving requires persistence as much as it requires ingenuity. When you get stuck,
or solve a problem incorrectly, back up and start over. Keep in mind that you’re probably
not the only one who is stuck, and that may even include your teacher. If you have taken
the time to think about a problem, you should bring to class a written record of your efforts,
not just a blank space in your notebook. The methods that you use to solve a problem, the
corrections that you make in your approach, the means by which you test the validity of
your solutions, and your ability to communicate ideas are just as important as getting the
correct answer.



Billiards, Surfaces and Geometry

1. Consider a ball bouncing around inside a square billiard table. We’ll assume that theDD

table has no “pockets” (it’s a billiard table, not a pool table!), that the ball is just a point,
and that when it hits a wall, it reflects off and the angle of incidence equals the angle of
reflection, as in real life.

(a) A billiard path is called periodic if it repeats, and the period is the number of bounces
before repeating. Construct a periodic billiard path of period 2.

(b) For which other periods can you construct periodic paths?

→ more problems on the other side! ←
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2. Now consider a circular billiard table. Again assume that the ball is just a point, andDD

that when it bounces off, the angle of incidence equals the angle of reflection. Note that
in a billiard table with curved edges, the ball reflects off of the tangent line to the point of
impact.

Draw several examples of billiard trajectories in a circular billiard table. Describe the
behavior in general.

3. Suppose 100 ants are on a log 1 meter long, each moving either to the left or rightST 1.8

with unit speed. Assume the ants collide elastically (when they hit each other, each ant
immediately turns around and goes the other way), and that when they reach the end of the
log, they fall off. What is the longest possible waiting time until all the ants are off the log?

From class:

Proposition. For periodic billiard paths on the square billiard table:

1. Every path has an even period, and

2. Every even number is the period of some billiard path.

Proof.

1. For a path in the direction of angle θ, bouncing against a vertical side transforms
the direction to angle 180 − θ, and bouncing against a horizontal side transforms the
direction to angle −θ. A subsequent bounce transforms the angle back to θ, or to
180 + θ. Thus after an even number of bounces, the angle is in the set {θ, 180 + θ},
and after an odd number of bounces, the angle is in the set {−θ, 180− θ}. For a path
to be periodic, it must return to its original direction, which can only occur after an
even number of bounces.

2. To construct a path of period 2(n + 1): it meets the midpoints of the two verti-
cal edges, and meets the top and bottom edges at points separated by distances of
1

2n
, 1
n
, . . . 1

n
, 1
2n

, with the path forming n diamonds. (Picture needed for this part.)
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1. Draw a line on an infinite squareDD

grid, and record each time the line crosses a
horizontal or vertical edge. We will assume
that the direction of travel along a line
is always left to right. We could record
the line to the right with the sequence
. . . •◦••◦••◦••◦••◦ . . ., or we could assign
A to horizontal and B to vertical edges, and
record it as . . . BABBABBABBA . . ..

(a) What is the slope of the line in the
picture?

(b) Record this cutting sequence of colors, or of As and Bs, for several different lines.
Describe any patterns you notice. What can you predict about the cutting sequence, from
the line?

(c) What should you do if the line hits a vertex?

Contextual note. The sequences of symbols in problem
1 are called cutting sequences. Dr. Caroline Series
(pictured to the left), a British mathematician, wrote
a series of papers exploring these sequences and linking
them to other areas of mathematics, in the 1980s. We
will see that cutting sequences are related to group
theory and continued fractions; Series also explained
their relationship with hyperbolic geometry.

2. Consider a billiard “table” in the shape of an infinite sector with a small vertex angle,DD

say 10◦. Draw several examples of billiard trajectories in this sector (calculate the angles at
each bounce so that your sketch is accurate). Is it possible for the trajectory to go in toward
the vertex and get “stuck”? Find an example of a trajectory that does this, or explain why
it cannot happen.

→ more problems on the other side! ←
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3. Outer billiards. Though it may seemDD

strange to call it “billiards,” we can also
define a billiard map on the outside of a
billiard table. We choose a starting point p,
and a direction, either clockwise or counter-
clockwise. Then, draw the tangent line from
p to the table in that direction to find the
point of tangency. Double the vector from p
to the point of tangency, and add this to p
to get p′, as in the picture. We repeat the
construction to find p′′, and so on.

Draw several examples of outer billiards on
a circular table, and describe the behavior
in general.

By the way, outer billiards are sometimes called “dual billiards.” When talking about several
kinds of billiards, you can use the term “inner billiards” for regular billiards.

4. Symmetries of the square. If you turn a square 90◦ counter-
clockwise, it looks the same as before. We call a 90◦ counter-clockwise
rotation a symmetry of the square, because after you do it, you have a
square just like the original. Let’s find all the symmetries of the square.

(a) Cut out a square and draw an R on one side, as shown, and also
hold it up to the light and trace through a backwards R on the back.

(b) How many different symmetries of the square can you find? Record
in the first line of the table below the appearance of the R for each one.

(c) In the second line of the table, indicate how to move the square to achieve that position.

From class:

Proposition. For a trajectory on the square grid that passes through a lattice point:

1. If its slope is rational, it passes through another lattice point, and

2. if its slope is irrational, it does not.

Proof.

1. If the slope is a rational number y/x in lowest terms, then another lattice point is
found by adding the vector [x, y] to the original point.

2. Since the slope is irrational, if you move horizontally a whole number of units, you
move vertically an irrational number of units, so you cannot land on a lattice point.
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1. A powerful tool for understanding inner billiards is unfolding aDD

trajectory into a straight line, by creating a new copy of the billiard
table each time the ball hits an edge. Two steps of the unfolding
process are shown for a small piece of trajectory of slope ±2 in the
square.

(a) Draw some more steps of the unfolding.

(b) Draw the complete billiard path in the square (keep going until
it closes up).

(c) Use the unfolding to explain why a trajectory with slope 2 yields a periodic billiard
trajectory on the square. (We always assume that one edge is horizontal.)

(d) Which other slopes yield a periodic billiard trajectory?

2. A proof of the billiard reflection law, part I. The Fermat principleST

says that light propagates from point A to point B along the path that
takes the least possible time. Since our paths are in the Euclidean plane,
this is just the shortest path. Consider a single reflection in a flat mirror
` (the horizontal line in the picture), and find the point X along the line
that minimizes the distance AX + XB. Explain how to obtain the billiard reflection law
(angle of incidence equals angle of reflection) as a consequence.

3. The continued fraction expansion gives an expanded expression of a given number. To
obtain the continued fraction expansion for a number, say 15/11, we do the following:

15

11
= 1 + 4

11
= 1 + 1

11/4
= 1 +

1

1 + 7/4
= 1 +

1

2 + 3/4
= 1 +

1

2 +
1

4/3

= 1 +
1

2 +
1

1 +
1

3

.

The idea is to pull off 1s until the number is less than 1, take the reciprocal of what is left,
and repeat until the reciprocal is a whole number. Since all the numerators are 1, we can
denote the continued fraction expansion compactly by recording only the bolded numbers:
15/11 = [1; 2, 1, 3]. The semicolon indicates that the initial 1 is outside the fraction.

Find the first few steps of the continued fraction expansion of π. Explain why the common
approximation 22/7 is a good choice. Find the best fraction to use, if you want a fractional
approximation for π using integers of three digits or fewer.
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4. We can also play outer billiards on polygonal tables. Here, the “tangent line” is alwaysDD

through a vertex − you can think of sweeping a line counter-clockwise until it hits a vertex,
as shown.

Draw several examples of outer billiards on a square table. Can you find any periodic
trajectories? Hint: be accurate. Use a ruler.

Contextual note. The outer billiards system was proposed as a
toy model for planetary motion: the table is the sun, and the
point is the planet bouncing around it. It is easier to analyze a
“discrete” dynamical system, where a planet jumps from place
to place, than a “continuous” dynamical system where planets
move smoothly, continuously interacting with each other.

It is a problem of great importance to know whether our solar
system is stable or whether Earth will spin out, away from the
sun. Related to this, it was for a long time an open problem
whether there exists a shape of table, and a starting point,
where the point eventually bounces off to infinity. Richard
Schwartz (left) gave one example of such a table, and Dmitry
Dolgopyat and Bassam Fayad gave another, both in 2009.
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1. A proof of the billiard reflection law, part II. Now, let the mirrorST

be a smooth curve `; as before, our goal is to find the point X on `
that minimizes the length AX+XB. We will use two different methods
to deduce the reflection law. If you haven’t taken these courses, don’t
worry! Someone in the class surely has, and will explain.

(a) If you have taken multivariable calculus: Let X be a point in the plane, and define
f(X) = |AX|+ |XB|. The gradient vector of the function fA(x) = |AX| is the unit vector
in the direction from A to X, and likewise for the function fB(x) = |BX|. By the Lagrange
multipliers principle, applied to the function under the constraint (fill
these in), X is a critical point if and only if ∇f(X) is perpendicular to `. Use vectors to
deduce the billiard reflection law.

(b) If you have taken physics: Let ` be a wire, X a small ring that can move along the wire
without friction, and AXB an elastic string fixed at A and B and passing through the ring.
Use an equilibrium tension argument to deduce the billiard reflection law.

2. Here’s another way that we can
unfold the square billiard table. First,
unfold across the top edge of the table,
creating another copy in which the ball
keeps going straight. The new top edge
is just a copy of the bottom edge, so we
now label them both A to remember
that they are the same. Similarly, we
can unfold across the right edge of the
table, creating another copy of the unfolded table. The new right edge is a copy of the left
edge, so we now label them both B. When the trajectory hits the top edge A, it reappears
in the same place on the bottom edge A and keeps going. Similarly, when the trajectory hits
the right edge B, it reappears on the left edge B.

(a) Label the top and bottom edges of a sheet of paper A, and the left and right edges B,
and tape the identified edges together to create a surface. What does this surface look like?

(b) Explain why, if the paper were very stretchy, the instructions in (a) would create the
steps in the figure below. The result is called a torus, the surface of a donut.

(c) The partial billiard trajectory shown on the left part of the top figure repeats after 6
bounces. Sketch in the rest of the trajectory in each of the three square pictures above.
What is its corresponding cutting sequence for the surface on the right part of the figure?
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Contextual note. There is an entire field of mathematics
devoted to the study of objects like the square torus that we
just constructed: the study of flat surfaces. Your instructor
is part of this community, as are a couple hundred other
mathematicians, spread across the globe and particularly
concentrated in France. Professor Amie Wilkinson (left) gave
a phenomenal animation of how, as we did with the square, we
can make an octagon into a flat surface. It is at 26:00 of her
Fields Symposium public lecture from 2018, available here:
https://www.youtube.com/watch?v=zjccKzHIniw&t=1560s

3. Show that the cutting sequence corresponding to a line of slope 1/2 on the square gridDD

is periodic. Which other slopes yield periodic cutting sequences? What can you say about
the period, from the slope?

4. Prove that every billiard trajectory on the square with irrational slope is non-periodic.DD

5. In problem 2, we ended up with a trajectory of slope 2 on
the square torus surface. The picture to the right shows some
scratchwork for drawing a trajectory of slope 2/5 on the square
torus. Starting at the top-left corner, connect the top mark on
the left edge to the left-most mark on the top edge with a line
segment, as shown. Then connect the other six pairs with parallel
segments, down to the bottom-right corner.

(a) Explain why, on the torus surface, these line segments connect
up to form a continuous trajectory. Follow the trajectory along,
and write down the corresponding cutting sequence of As and Bs.

(b) Exactly where should you place the tick marks so that all of the segments have the same
slope? Create an accurate picture for a trajectory of slope 1/2 and then 3/2.

(c) Could you draw a trajectory of any other slope, using the same tick marks?

(d) Draw a picture of a billiard trajectory with slope ±2/5.

Spring 2021 4b Diana Davis
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1. In Page 2 # 4, you found the eight symmetries of the square. It turns out that theseDD

eight elements form a group, called the dihedral group of the square. For a set of elements
to be a group, it must have the following properties:

1. It contains an identity element, an element that doesn’t change anything;

2. Each element has an inverse, an element that “undoes” its action;

3. The group is closed : composing two elements yields one that is already in the group;

4. Composing elements is associative, i.e. a(bc) = (ab)c for elements a, b, c.

(a) Explain why parts (1) and (2) hold for the symmetries of the square.

(b) Fill in the following table to show that (3) holds. Note down any observations.

Part (4) seems tedious – is there a short way to prove it? Let’s look at this instead:

(c) Does this group of symmetries commute, i.e. is ab = ba always true for symmetries a, b?

Contextual note. Some groups, such the group of integers under
multiplication, are commutative. Others, like the one above, are not.
For some sets, such as the set of integers, you can actually define two
operations (e.g. addition and multiplication) on them, and this makes
the set into a ring. Professor Haydee Lindo of Harvey Mudd College
(left) studies commutative rings.
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2. Consider again a billiard table in the shape of an infinite sector, with vertex angle α.DD

Use unfolding to show that any billiard on such a table makes (a) finitely many bounces,
and in fact (b) at most dπ/αe bounces. Hint : Unfold the sector as many times as you can.

Here the notation d · e is the “ceiling” and means “round up,” e.g. dπe = 4.

3. Draw an accurate picture of a trajectory on the square torus with slope 3/4, and doDD

the same for two other slopes of your choice. For each one, find the corresponding cutting
sequence. Note down any observations.

4. Consider again outerDD

billiards on the square table,
in the counter-clockwise direc-
tion.

(a) Points p on the blue lines
are not allowed, because their
images p′ are ambiguously de-
fined. Explain.

(b) Points p whose image p′

is on a blue line are also not
allowed. Explain. These are
the inverse images of the blue
points. Color these points red.

(c) The inverse images of the
red lines are also not allowed.
Explain. Color these green.

(d) Color the inverse images
of the green points black.
Keep going, with different col-
ors at each step. Describe the
full set of disallowed points.

Note: The resemblance of the (incomplete) diagram to a swastika is unintentional. By the
definition of the outer billiard map, it is unfortunately impossible to avoid. This symbol was
first used 12,000 years ago; the fact that it arises in outer billiards shows that it is a natural
construction that has sadly become synonymous with an odious regime.
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1. We saw that a billiard trajectory on the square table can be unfolded to a line on theDD

square torus. Going the other way, a trajectory on the square torus can be folded to a billiard
trajectory on the square table.

(a) Confirm that each of the trajectories below is a closed path on the square torus.

(b) Carefully trace the first figure onto a piece of patty paper (provided for you). Fold it in
half as indicated by dashed lines, to transform it into a billiard trajectory!

Repeat for the second figure.

(c) Find the corresponding cutting sequences on the square torus, and on the square table.
Note any observations.

2. In Page 4 # 5, we put 2 marks on edge A and 5 marks on edge B and connected up theDD

marks to create a trajectory with slope 2/5. Do the same procedure with 4 marks on edge
A and 10 marks on edge B. Explain what you get.
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3. Consider a billiard trajectory in the unit circle,ST

where at each impact the trajectory makes angle α with
the circle.

(a) Find the central angle θ from the circle’s center,
between each impact point and the next one, as a
function of α.

(b) Prove that if θ = 2πp/q for some p, q ∈ N, then
every billiard orbit is q-periodic and makes p turns
around the circle before repeating.

(c) What happens if θ is not a rational multiple of π?

4. In Page 5 # 4, you showed that for outer billiards on the square, all of the points onDD

the square grid lines are not allowed. Choose a point p that is not on one of the grid lines.
Under the outer billiard map, this point reflects through a sequence of vertices v1, v2, . . .
where each vi is one of the four vertices of the square table. Explain why every point that
is in the same (open) square as p reflects through that same sequence of vertices.

11

15

5. Geometrically, the continued fraction algorithmDD

for a number x is:

1. Begin with a 1×x rectangle (or p×q if x = p/q).

2. Cut off the largest possible square, as many
times as possible. Count how many squares you
cut off; this is a1.

3. With the remaining rectangle, cut off the largest
possible squares; the number of these is a2.

4. Continue until there is no remaining rectangle.
The continued fraction expansion of x is then
[a1, a2, . . .] or possibly [a1; a2, . . .].

(a) Draw the rectangle picture for 5/7 to geometrically compute its continued fraction
expansion, and (b) compute the continued fraction expansion for 5/7 in the way explained
in Page 3 # 3, and check that your results agree. Explain why this geometric method
is equivalent to the fraction method previously explained, for determining the continued
fraction expansion.
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1. Prove that a trajectory on the square torus is periodic if and only if its slope is rational.DD

2. Geometrically, you can construct an ellipse as follows: TakeST

a length of string and tape down the two endpoints, so that
the string is somewhat loose. With your pencil, pull out the
string until it is taut and trace out all the points the pencil can
reach, as shown.

(a) Choose two dots as foci, and loosely tape down a piece of string. Use a pencil to make
an ellipse as described above.

(b) Each of the two endpoints of the string is called a focus of the ellipse. Show that a
billiard trajectory through one focus reflects through the other focus. In other words, the
string is a billiard path in the ellipse.

3. An active area of research is to describe all possible cutting sequences on a given surface.DD

On the square torus, that question is: “Which infinite sequences of As and Bs are cutting
sequences corresponding to a trajectory?” Let’s answer an easier question: How can you tell
that a given infinite sequence of As and Bs is not a cutting sequence? You have computed
many examples of cutting sequences that do correspond to a line on the square grid or square
torus. Write down four of them. Then make up an example of an infinite sequence of As
and Bs that cannot be a cutting sequence on the square grid or square torus, and justify
your answer.

Contextual note. The reflection property of ellipses
is well known, and appears in architecture as the
whispering gallery. Several U.S. state house rotundas,
and the Statuary Hall at the U.S. Capitol building,
have ellipsoidal ceilings, so if you stand at one
focus, you can hear someone whisper at the other.
An accessible and impressive example of this is in
Grand Central Station in New York City (left), where
although the background noise is very loud, if you
speak into one column, someone on the opposite
column can hear you.

→ more problems on the other side! ←
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4. An automorphism of a surface is a bijective action that takes the surface to itself.DD

Two types of automorphisms of the square torus come from symmetries of the square itself:
reflections and rotations, as we found in Page 2 # 4 and Page 5 # 1.

(a) Explain what a reflection of the square torus looks like on the torus surface. You might
think about what it does to the surface, or to a closed path drawn on the surface.

(b) Do the same for a 90◦ rotation.

5. It turns out that there is one more automorphism of the square torus, that is not aDD

symmetry of the square: a shear. The shear is shown below on the square on and the 3D
surface, where its effect is to twist the torus.

(a) Explain the effect of this shear on the surface, and on a trajectory drawn on that surface.

(b) What 2× 2 matrix, applied to the “unit square” [0, 1]× [0, 1] shown in the left picture,
gives the parallelogram shown in the middle picture?
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Synthesis due – problems in class

1. Given a trajectory on the square torus, we want to know what happens to that trajectoryDD

if we apply a symmetry of the surface. To do this, we can sketch the trajectory before and
after applying the symmetry. Do so below for each of the eight symmetries of the square, as
indicated by the curved arrow or the reflection line, and for the shear. I’ve done one for you.

The flip across the positive diagonal is in bold because we will use it later.

2. (Continuation) For each symmetry above, make a guess about what it does to a startingDD

slope of the form p/q. Can you prove your answer correct?

→ another problem on the other side! ←
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3. In Page 6 # 4, we showedDD

that for the outer billiard map
on the square, points in a
given square in the grid move
together. Now we will explore
how they move.

(a) Plot the complete orbit
(meaning, until you get back
to where you started) of the
R and of the winky face under
the outer billiard map. One
step is shown for the R.

(b) Prove that the square of
the outer billiard map (this
means that you apply it twice)
is a translation.
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1. Theorem (billiards in an ellipse).ST

Consider an ellipse E with foci F1, F2. If
some segment of a billiard trajectory does
not intersect the focal segment F1F2 of E,
then no segment of this trajectory intersects
F1F2, and all segments are tangent to the
same ellipse E ′ with foci F1 and F2.

(a) Consider the billiard trajectory A0A1A2

in the larger ellipse E shown in the figure.
Explain why ∠A0A1F1 = ∠A2A1F2.

(b) Reflect F1 across A0A1 to create F ′1, and
reflect F2 across A1A2 to create F ′2. Explain
why ∠A0A1F

′
1 = ∠A0A1F1 and ∠A2A1F

′
2 = ∠A2A1F2.

(c) Show that ∆F ′1A1F2 and ∆F1A1F
′
2 are congruent.

(d) Mark the intersection of F ′1F2 with A0A1 as B, and the intersection of F1F ′2 with A1A2 as
C. Show that the string length |F1B|+ |BF2| is the same as the string length |F1C|+ |CF2|.
(e) Prove the theorem as stated above.

2. Given a trajectory on the square torus, we want to know what happens to that trajectoryDD

under an automorphism (symmetry) of the surface. One way to answer this question is to
sketch the trajectory before and after applying the automorphism (Page 8 # 1). Another
way is by comparing their cutting sequences: the cutting sequence c(τ) corresponding to
the original trajectory τ , and the cutting sequence c(τ ′) corresponding to the transformed
trajectory τ ′.

(a) Let τ2 be the trajectory of slope 2. Sketch τ2, and find c(τ2).

(b) For each automorphism (1)-(5) below, apply it to τ2 to get a transformed trajectory τ ′2,
sketch τ ′2, and compute c(τ ′2).

(c) Explain how to obtain c(τ ′) from c(τ) for a general trajectory τ , for each automorphism.

(1) reflection across a horizontal line;

(2) reflection across a vertical line;

(3) reflection across the positive diagonal;

(4) reflection across the negative diagonal;

(5) rotation by 90◦.
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3. (Continuation) For each of the five automorphisms in the previous question:DD

(a) Find the 2×2 matrix that performs this automorphism. For the purpose of this question,
assume that the square torus is centered at the origin.

(b) Find the determinant of each matrix and explain why they are all ±1.

4. Explain why a cutting sequence on the square torus can have blocks of multiple AsDD

separated by single Bs, or blocks of multiple Bs separated by single As, but not both.

5. Find the continued fraction expansions of 3/2, 5/3, 8/5, and 13/8. Describe any patternsDD

you notice, and explain why they occur.
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In the following problems, we will determine the effect of the shearing automorphism from
Page 7 # 5 on a trajectory τ and its cutting sequence c(τ).

1. First, we will apply symmetry to reduce our work to just one set of trajectories. ShowDD

that, given a linear trajectory in any direction on the square torus, we can apply rotations
and reflections so that it is going left to right with slope ≥ 1.

2. Since we have reduced to the case of slopes that are ≥ 1, we will analyze the effect of theDD

vertical shear [ 1 0
−1 1 ], because these slopes work nicely with this shear. Later we will show

that everything else can be reduced to this case.

As an example, we’ll use the trajectory τ
with slope 3/2, with corresponding cutting
sequence c(τ) = BAABA (left picture). We
shear it via [ 1 0

−1 1 ], which transforms the
square into a parallelogram (middle picture),
and then we reassemble the two triangles
back into a square torus, while respecting
the edge identifications (right picture). The
new cutting sequence is c(τ ′) = BAB.

Do this geometric process for three different trajectories τ of your choice: Sketch a trajec-
tory τ , sketch its image as a parallelogram after shearing by [ 1 0

−1 1 ], and then sketch the
reassembled square with the new trajectory τ ′. For each, record c(τ) and c(τ ′). Try to find
the pattern: a rule to get c(τ ′) from c(τ). Hint : You can use the “edge marks” technique
from Page 4 # 5 on the parallelogram edges to make an accurate picture.

—————————

3. Find the continued fraction expansion of
√

2 − 1. Then solve the equation x = 1
2 + x

DD

and explain how these are related.

4. How many billiard paths of period 10 are there on the square billiard table? Of periodDD

14? Construct (make a mathematically accurate sketch of) each of these.

5. We have identified the top and bottom edges, and the left and right edges, of a square toDD

obtain a surface: the square torus. If we identify opposite parallel edges of a parallelogram,
what surface do we get?
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1. (Continuation of Page 10 # 2) Show that if we apply the shear [ 1 0
−1 1 ] to the square torus:DD

(a) The effect on the slope of a trajectory is to decrease it by 1.

(b) The effect on the cutting sequence corresponding to a trajectory whose slope is greater
than 1 is to remove one A between each pair of Bs.

2. Explain why a trajectory with slope p/q (in lowest terms) on the square billiard tableDD

has period 2(p+ q).

3. Explain why the continued fraction expansion of a number terminates (stops) if and onlyDD

if it is rational.

4. If we identify oppositeDD

parallel edges of a hexagon,
what surface do we get? The
figure to the right shows one
way to figure it out, via a cut-
and-paste approach. Explain.

An alternative approach is to
sketch what it looks like to
glue identified edges together,
assuming that the hexagon is made out of stretchy material. Try this, too.

5. In the picture above, we tiled the plane with a hexagon that has three pairs of oppositeDD

parallel edges. Our “random” hexagon happened to be convex. Does a non-convex hexagon
with three pairs of opposite parallel edges still tile the plane?
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1. We need one more piece in order to relate trajectories on the square torus, continuedDD

fractions, and cutting sequences. Show that if we apply the flip [ 0 1
1 0 ] to the square torus:

(a) The effect on the slope of a trajectory is to take its reciprocal.

(b) The effect on the cutting sequence corresponding to a trajectory is to switch As and
Bs.

2. Starting with a trajectory on the square torus with positive slope, apply the followingDD

algorithm:

1. If the slope is ≥ 1, apply the shear [ 1 0
−1 1 ].

2. If the slope is between 0 and 1, apply the flip [ 0 1
1 0 ].

3. If the slope is 0, stop.

An example is shown below.

We can note down the steps we took: shear, flip, shear, shear. We ended with a slope of 0.
Work backwards, using this information and your work in Page 11 # 1 and Page 12 # 1, to
determine the slope of the initial trajectory. Keep track of each step.

3. Consider the counter-DD

clockwise outer billiard map on
the triangular billiard table, as
shown.

(a) Explain why points on the
thick blue lines are not allowed.
Then color the inverse images
(red) of the blue lines, the inverse
images (green) of the red lines,
the inverse images (black) of the
green lines, the inverse images
(purple) of the black lines, and
so on.

(b) Identify some necklaces of
iterated images of triangles, and
color each necklace a different
color, like the picture in Page 8
# 5.
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4. We can create a surface by identifying opposite parallel edges of a single polygon, as weDD

have done with the square and hexagon. We’ll call such a surface a polygon surface. Parallel
edges must be parallel and also the same length. Opposite edges means that the polygon is
on the left side of one of the edges, and on the right side of the other.

In a similar way, we can create a surface from two polygons, or from any number of polygons.
Some examples are below. Edges with the same letter are identified, as with A and B on
the square torus. The two polygons on the right side together form a single surface.

(a) Watch Amie Wilkinson’s talk (the 3 minutes of it from 26 to 29 minutes) that shows
how to wrap the flat octagon surface (far left) into a curved surface in 3-space. What is its
genus – how many holes does it have?

YouTube: “Dr. Amie Wilkinson - Public Opening of the Fields Symposium 2018,” available
at https://www.youtube.com/watch?v=zjccKzHIniw&t=1560s

(b) Do your best to repeat her stretching methods for the double pentagon surface (center)
to make it into a curved surface in 3-space.

(c) The flat octagon surface has 4 edges. How many edges do the other two surfaces have?

5. Suppose that a given periodic cutting sequence on the square torus has period n. AreDD

there any values of n for which you can determine the cutting sequence (perhaps up to some
symmetry) from this information?
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1. (Continuation of Page 12 # 2) Translate the given algorithm, which uses the slope of aDD

trajectory, into an algorithm that uses the cutting sequence corresponding to a trajectory.
You should translate each of the four sentences (“Starting with. . . ,” 1, 2 and 3.) Then apply
your algorithm to the cutting sequence ABAAB and check that your results are consistent
with the pictures in the figure.

2. Make up your own example of a polygon surface (recall Page 12 # 4) that will be differentDD

from everyone else’s, made from three polygons. We will call your new surface S. How many
edges does S have?

3. Vertex chasing. To explain how toDD

count the vertices of a surface, we will use
the square torus. First, mark any vertex
(say, the top left). We want to see which
other vertices are the same as this one. The
marked vertex is at the left end of edge A, so we also mark the left end of the bottom edge
A. We can see that the top and bottom ends of edge B on the left are now both marked, so
we mark the top and bottom ends of edge B on the right, as well. Now all of the vertices
are marked, so the square torus has just one vertex. (We already knew that − how?)

(a) Determine the number of vertices for a hexagon with opposite parallel edges identified.

(b) Do the same for each surface in Page 12 # 4, and

(c) for your surface S created in the previous problem.

4. Let P be a convex quadrilateral that has a 4-periodic inner billiard trajectory that reflectsST

consecutively in all four sides. Prove that P is cyclic.

(Recall that a cyclic quadrilateral has a circle containing all four of its vertices.)
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1. Apply the geometric algorithm from Page 12 # 2 and Page 13 #DD

1 to the trajectory shown to the right. Note down the steps you take
(shears and flips) and use this information to work backwards from an
ending slope of 0 to determine the slope of the initial trajectory. Show
all of your steps.

2. (Continuation) Explain how shears and flips on the square torus are related to continuedDD

fraction expansions.

3. (Continuation) Find the cutting sequence corresponding to the trajectory above. ApplyDD

your algorithm from Page 13 # 1 to it, and check that your results at each step are
consistent with each step of your work in problem 1.

4. Given that the continued fraction expansion of a particular number is [0; 1, 2, 2], find theDD

cutting sequence corresponding to a trajectory on the square torus with this slope.

5. Once we’ve made a surface, the Euler characteristic gives us a way of easily determiningDD

what kind of surface we obtain, without needing to come up with a clever trick like cutting
up and reassembling hexagons into parallelograms.

Given a surface S made by identifying edges of polygons, with V vertices, E edges, and F
faces, its Euler characteristic is

χ(S) = V − E + F.

Find the Euler characteristic of (a) the square torus, (b) the cube, (c) the tetrahedron,
(d) the hexagon surface from Page 11 # 4 and (e) one of the surfaces from Page 12 # 4.

(f) Comment on any patterns you notice.

6. (Continuation) One of the main goalsDD

of the field of topology is to classify surfaces
by their genus, which, informally speaking,
is the number of “holes” it has. The surfaces
to the right have genus 1, 2 and 3.

We can use the Euler characteristic to determine the genus of a surface: A surface S with
genus g has Euler characteristic χ(S) = 2− 2g. Use this to compute the genus of each of
your surfaces from the previous problem, and check that your answer agrees with reality.
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Synthesis due – in-class activity

1. The two pictures below show linear trajectories on the square torus, as usual.DD

(a) Explain why the purple trajectory (left) is a single trajectory, while the red and blue
trajectories (solid and dashed, right) are two different trajectories.

(b) The red and blue trajectories partition the square torus into two pieces. In other words,
if the trajectories were walls, the smiley person could only explore half of the torus. Justify
this statement.

(c) Also explain why the purple trajectory does not partition the torus into two pieces –
the smiley person can explore the whole thing.

2. Cutting a bagel into two linked rings.DD

1. Obtain a bagel. Draw the blue and red trajectories on it.
2. Obtain a serrated knife. Your goal is that the pointy end of the knife follows the red
trajectory, while the handle end follows the blue trajectory. Cut the bagel to make this
happen. You will probably want to flip the roles of red and blue halfway through, to keep
the handle on the outer part of the bagel.
3. Separate your bagel into linked rings!

(a) Explain why the procedure above leads to linked rings.

(b) Explain what would have happened if you had cut along the purple trajectory instead.

If you finish that and want more, see the other side
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3. In our classroom, we have bagels with trajectories corresponding to slopes 1, 1/2, 2 andDD

3/2. Draw a trajectory on a bagel corresponding to a slope of your choice. Some trajectories
are below in case you need inspiration, but do feel free to use any slope you like.

Advice: Draw lots of guiding marks on the bagel before you start drawing in the trajectory!

Connection to knot theory: Imagine that the bagel disappears, and all that is left is the
trajectory, now made out of a piece of string. It turns out that the string is knotted up –
you can’t untangle it into a circle. The trajectory with slope p/q corresponds to the (p, q)
torus knot, meaning that it goes through the center p times and around the outside q times.
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Now that we have explored the simplest case (the square) of classical billiards (inner billiards)
in detail and understood it deeply, we will expand our view to other types of billiards.

1. Tiling billiards. Another type of billiards (besides inner and outer)DD

that we will study is tiling billiards, where a trajectory refracts through
a tiling of the plane. The refraction rule is that when the trajectory hits
an edge of the tiling, it passes through in such a way that the angle of
incidence is equal to the angle of reflection, and the trajectory has been
reflected across the edge, as shown to the right. Sketch some trajectories
on the square grid tiling. What kinds of behaviors can you find? Can you prove that these
are the only ones?

2. Walking around a vertex. We can determine the angleDD

around a vertex by “walking around” it, as shown in the
figure for a hexagon with opposite parallel edges identified.
The left picture shows that the angle around the black

vertex is 3 · 2π
3

, and the right picture shows the same for

the white vertex. Explain what is going on.

Since the black and white vertices each have 2π of angle around them, all the corners of the
hexagon surface come together in a flat plane, as we have already seen.

Find the angle around each vertex of the surfaces in Page 12 # 4.

3. (Continuation) A surface is called flat if it looks like the flat plane everywhere, exceptDD

possibly at finitely many cone points (vertices), where the angle around each vertex is a
multiple of 2π. Prove that if a surface is created by identifying opposite parallel edges of a
collection of polygons, then it is flat.
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4. The Fagnano trajectory. You have constructed sev-ST

eral periodic billiard paths in the square billiard table;
other polygons also have periodic paths. A classical
theorem says that Fagnano trajectory connecting the
base points of the three altitudes of a triangle is a
3-periodic billiard trajectory. We will prove this by
showing that angles ARP and CRQ are equal; the
argument is the same for the other bounces.

(a) Opposite angles of a quadrilateral add up to π if
and only if the quadrilateral is cyclic. Use this result to
show that quadrilaterals APOR and CROQ are cyclic,
as suggested by the diagram.

(b) Another classic theorem of geometry says that two angles supporting the same circular
arc are equal. Use this to show that ]PAO = ]PRO, and ]ORQ = ]OCQ.

(c) Use triangles BAQ and BCP to show that ]PAO = ]OCQ.

(d) Show that ]ARP = ]CRQ, as desired.

5. An active area of research is to describe, or “characterize,” all possible cutting sequencesDD

on a given surface. Now we can do this for the square torus.

Theorem. Valid cutting sequences on the square torus are those that do not fail under the
following algorithm:

Starting with an infinite sequence of As and Bs, repeatedly apply the following algorithm:

(1) If there are multiple Bs separated by single As, switch As and Bs.

(2) If there are multiple As separated by single Bs, remove an A between each pair of Bs.

(3) If the sequence has AA somewhere and BB somewhere else, stop; it fails to be a valid
cutting sequence.

Earlier in the course, students conjectured that a cutting sequence could only have two
consecutive numbers of As, such as 2 and 3, between each pair of Bs, e.g. BABAAA is not
allowed. Use the theorem to prove this conjecture true.

Contextual note. Tiling billiards is motivated by the
existence of metamaterials, solids that have a negative
index of refraction. Typical materials such as water and
glass have a positive index of refraction; you have likely
worked with these in physics, with Snell’s Law. The
idea is to create a two-colorable tiling out of materials
with opposite indices of refraction. I (DD) named this
type of billiards tiling billiards and coauthored the first
two papers in this area, with two different groups of
students; one group is shown to the left.
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1. We saw that for tiling billiards on the square grid, there are only two types of trajectories:DD

those that go to the opposite edge and zig-zag, and those that go to the adjacent edge and
make a 4-periodic path. How many types of trajectories are there for tiling billiards on the
triangular grid?

In billiards on the square, we unfolded a billiard trajectory into a line on the square grid,
and onto a linear trajectory on the square torus. In an analogous way, folding is a powerful
technique for understanding tiling billiards trajectories:

2. Consider a tiling billiards trajectory that crosses an edge e of the tiling. Show that, ifDD

you fold the tiling along edge e, the two pieces of trajectory that intersect edge e lie on top
of each other.

3. Consider again the 3-periodic Fagnano trajectoryST

from Page 16 # 4. Sketch a trajectory that is parallel
to the one in the construction and nearby. Show that
this trajectory is also periodic, and find its period.

4. Consider again the theorem in Page 16 # 5.DD

(a) The vexing part of this characterization is that it
doesn’t have a step saying, “Stop! Congratulations;
you have a valid cutting sequence.” It only says, “Keep
going; your cutting sequence hasn’t proven to be invalid
yet.” But it turns out that it’s the best we can do.
Explain why this algorithm does stop for a periodic
cutting sequence.

(b) I left out one technical point of the theorem: It actually characterizes the closure of
the space of all cutting sequences. Valid cutting sequences are in the interior of the space,
and cutting sequences such as . . . AAABAAA . . . are on the boundary of the space. Explain
why this cutting sequence does not fail in the algorithm, and why it is not a valid cutting
sequence. Find another cutting sequence on the boundary, other than . . . BBBABBB . . ..
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1. Periodic trajectories in more triangles.DD

(a) Explain why the Fagnano trajectory only works
for acute triangles.

(b) The construction shown to the right was found
by Rich Schwartz (DD’s Ph.D. advisor). He calls it
“shooting into the corner.” Fill in the details, and show that it works for every right triangle.

(c) Find an example of a periodic path in an obtuse triangle.

Contextual note. The biggest open problem in billiards is: does every triangular billiard table
have a periodic trajectory? The Fagnano trajectory shows that every acute triangle has a
periodic billiard trajectory, and the construction above shows that every right triangle has
one. Howie Masur showed that every polygon (including triangles) whose angles are rational
numbers of degrees has a periodic path. Rich Schwartz used a computer-aided proof to show
that every triangle whose largest angle is less than 100◦ has a periodic billiard trajectory,
and in 2018 a team of four researchers extended that result to 112.3◦. The problem is open
in general for irrational-angled obtuse triangles with an angle larger than 112.3◦.

2. Here is our dream: To understand the effect of every automorphism of the square torus,DD

on the cutting sequence corresponding to a trajectory. Here is our progress so far:

(1) There are three types of automorphisms: rotations, reflections and shears. We under-
stood the effects of rotations and reflections in Page # . (fill these in)
(2) Using rotations and reflections, we reduced our work, now only for shears, to the case
of trajectories whose slope is greater than 1, in Page # .
(3) We understood the effect of the matrix [ 1 0

−1 1 ] on a trajectory on the square torus in
Page # .

By the way, we used [ 1 0
−1 1 ] because it works nicely with trajectories whose slope is greater

than 1: it makes them simpler, like taking a derivative in calculus, while [ 1 0
1 1 ] makes them

more complicated, like taking an integral.

Find the analogous effects on slopes of trajectories, of the matrices [ 1 0
1 1 ] , [ 1 1

0 1 ] and [ 1 −10 1 ].

3. (Continuation: challenge problem, optional) There is just one more step, to show thatDD

every shear can be reduced to the ones we understand. Prove the following:

(4) Every 2 × 2 matrix with nonnegative integer entries and determinant 1 is a product of
powers of the shears [ 1 1

0 1 ] and [ 1 0
1 1 ]. For example, [ 3 7

2 5 ] = [ 1 1
0 1 ] [ 1 0

1 1 ]2 [ 1 1
0 1 ]2.

4. The figure on the next page shows a periodic tiling billiards trajectory on a triangleDD

tiling. Cut off the white part and then fold along all the edges of the tiling, in such a way
that every part of the trajectory lies on a single line. The solid lines should be “mountain
folds” and the dashed lines should be “valley folds.” Notes: You can do it! Bring your folded
paper to class. Save your folded paper, as we will use it in many subsequent problems.
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1. The figure below shows the Fagnano trajectory in the 40-60-80 triangle. In Page 17DD

# 3 we showed that there are nearby parallel billiard trajectories of period 6. It turns out
that those trajectories form a “strip,” or “family.” The figure shows an unfolding of this
trajectory, with a new copy of the triangle at each edge crossing, until the newest triangle is
a translation of the original triangle.

(a) Sketch the “strip” of parallel billiard trajectories on the unfolding. How wide can you
make the strip − what constrains its width?

(b) Choose one trajectory in this strip, other than the original billiard path, and “fold” it
back up, i.e. sketch it on the triangle in the lower right. Comment on any patterns you
notice.

2. Start with a parallelogram, and add a diagonal to break it into two triangles T1 and T2.DD

Fold the parallelogram along this diagonal. Prove that, in this folded state, the circumcenters
of T1 and T2 coincide.
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3. Consider a circle broken into a red arc and a blueDD

arc, taking up 1/3 and 2/3 of the circle respectively,
as shown. The game is to start with any point on the
circle, repeatedly rotate it by a 1/3 turn, and each time
note down which part of the circle it lands in – say, an
A if it lands in the red arc and a B if it lands in the
blue arc. Try this for several different starting points
of your choice, and rotate each of them until you see a
pattern.

4. One reason why people study cutting sequences on the square torus is that they haveDD

very low complexity: The complexity function f(n) on a sequence is the number of different
“words” of length n in the sequence. One way to think about complexity is that there is a
“window” n letters wide that you slide along the sequence, and you count how many different
things appear in the window.

(a) What is the highest possible complexity for a sequence of As and Bs? For this question,
consider all possible sequences of As and Bs, not just cutting sequences.

(b) Confirm that the cutting sequence ABABB has complexity f(n) = n+1 for n = 1, 2, 3, 4
and complexity f(n) = n for n ≥ 5.

(c) Prove that a periodic cutting sequence on the square torus with period p has complexity
f(n) = n+ 1 for n < p and complexity f(n) = n for n ≥ p.

(d) Aperiodic sequences on the square torus are called Sturmian sequences. Show that
Sturmian sequences have complexity f(n) = n+ 1.

5. The Gauss-Bonnet Theorem says that the total (Gaussian) curvature K of a closedDD

surface S is ∫
∂S

k dA = 2π χ(S).

Here k is the curvature at each point of the surface and χ(S) is the Euler characteristic.

(a) Compute each side of this equation for the unit sphere S.

The defect of a vertex is 2π minus the sum of all the angles at the vertex. The total defect
of a polyhedron is the sum of the defects of all of its vertices.

(b) Descartes’ special case of the Gauss-Bonnet Theorem says that the total defect of a
polyhedron is 2π χ(S). Check this formula for the cube, the square torus, and the octagon
surface.
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1. Show that a periodic trajectory on a polygonal billiard tableST

is never isolated: an even-periodic trajectory belongs to a 1-
parameter family of parallel periodic trajectories of the same
period and length, and an odd-periodic trajectory is contained
in a strip consisting of trajectories whose period and length is
twice as great. Hint : Think about a wide ribbon whose center
line is the trajectory, wrapping around the triangle.

2. Given a tiling billiards trajectory on an obtuse triangleDD

tiling (refer to your folded triangles from Page 21 # 3), show
that, if the tiling is folded along each edge that the trajectory crosses, all of the triangles
that the trajectory crosses are inscribed in the same circumcircle in their folded state. Is the
same true on non-obtuse triangle tiling?

3. The picture to the right shows many trajectories of slopeDD

1/2 on the square torus. As usual, we care about when a given
trajectory crosses a horizontal or vertical edge, and we record
such crossings with an A or B, respectively. In this picture, I’ve
added a diagonal of the square, and colored it on both sides:
on the bottom side to indicate whether an incoming trajectory
comes from a red or blue side, and on the top side to indicate
whether an outgoing trajectory will hit a red or blue side. Show
how to use just the diagonal (copied larger below) to record the
edge crossings of the indicated trajectory.

4. Counting periodic trajectories, part IDD

For a natural number p, how many periodic billiard paths (up to symmetry) of period 2p
are there on the square billiard table? Check your answer with your previous results.
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Synthesis due – METIC and problems in class

1. We saw that the octagon and double pentagon surfacesDD

each have just one vertex, with 6π of angle around it.
What does this even mean? What does it look like?

Choose one of the following activities and do it:

(a) Cut slits in three sheets of paper, and tape the edges together as shown above. The
vertex angle at the white point is now that of three planes, which is 6π. Discuss.

(b) Cut out the double pentagon below (which includes Dr. Libby Stein, Brown ’15, dancing
on this surface). Tear off each corner, keeping each piece as large as you can. Tape them
together according to which edges are identified. The angle at the vertex is now 6π. Discuss.

(c) Cut out the octagon on the next page. Do as described in (b).
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2. Given a tiling billiards trajectory on an obtuse triangle tiling (refer to your foldedDD

triangles from Page 21 # 3), show that, if the tiling is folded along each edge that the
trajectory crosses, all of the triangles that the trajectory crosses are inscribed in the same
circumcircle in their folded state. Is the same true on non-obtuse triangle tiling?
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1. The construction in Page 20 # 3 showed how to represent a trajectory on a surface viaDD

the motion of a point on an interval exchange transformation.

(a) Explain why the interval exchange transformation (IET) in Page 20 # 3 is identical to
the rotation in Page 19 # 3.

(b) Explain why every 2-interval IET is equivalent to a rotation.

(c) The figure below shows the six possible ways of rearranging three intervals. (1) is the
identity, and (2) and (3) are just 2-IETs (rotations) on a smaller interval. Of the remaining
three, two of these are also rotations, leaving just one true 3-IET. Which one?

2. For the 3-IET that you identified in the previous problem:DD

(a) Choose a point, mark all the places it goes (find its orbit), and find its period.

(b) The interval lengths for the IETs above are 1/2, 1/6, 1/3. What if they were irrational?
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3. Each picture below shows a trajectory on the square torus surface (solid line), and aDD

parallel trajectory that is slightly shifted, or “perturbed,” from the original (dotted line).
Let’s consider them to be in the same “family.”

(a) For each picture, draw another trajectory that is slightly perturbed from the given ones,
and is also in the same family.

(b) If you perturb a trajectory enough, it will eventually hit a vertex. A “singular trajectory”
that hits a vertex is not allowed, and forms the boundary of the family of trajectories. Draw
in these boundaries for each of the pictures.

(c) The union of a family of trajectories is called a cylinder. Can you guess why this name
was chosen?

4. Counting periodic trajectories, part IIST

Another way to count billiard trajectories in the square is to ask how many periodic trajec-
tories of length less than L it has. This question should be understood properly: Periodic
trajectories appear in parallel families (as explored above); we will count the number of
families.

(a) How long is the trajectory of slope 2? The trajectory of slope 3/4?

(b) Explain why the number of lattice points inside a disc of radius L is approximately πL2,
especially when L is large.

(c) Use the above to show that the number of periodic families of length less than L is
approximately πL2/8.
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1. Here is a new game: make some number of 1 × 1 squaresDD

going vertically (here, six). Then make a big square that goes
across all of them, and make some number of those going
horizontally (here, one). Then make a big square that goes
across all of them, and make some number of those going vertically, and so on.

The picture shows how to do this to end up with a 7× 27 rectangle. Show how to do
this to make a rectangle whose dimensions are the day and month of your birth.

2. Recall that the union of a family of parallel trajectories is called a cylinder (Page 22DD

# 3). For a polygon surface, a cylinder direction is a direction of any trajectory that
goes from a vertex to another vertex, possibly crossing many polygons.

(a) Explain why slopes 1, 2, and 2/3 are cylinder directions for the square torus.

(b) What are all of the cylinder directions for the square torus?

3. The pictures below show a surface made from a non-regular hexagon.DD

(a) The first picture shows many trajectories in a given direction. Explain how any
trajectory in this direction can be represented by the orbit of a point on a particular IET.

(b) In the second picture, draw a family of trajectories in a different direction of your choice.
Sketch the corresponding IET.

Contextual note. In mathematics, we often care about the dimension in which we are
working. A torus is a 2D object, and if we look at it as the surface of a bagel, it is a
2D surface “embedded” in 3D space. The family of parallel trajectories in a given direction
on the square torus looks like a 2D thing, but the problem above shows that the behavior
of each one can be reduced to the orbit of a point on an IET, which is a 1D thing.
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You all don’t seem that enamored with tiling billiards on triangle tilings, so we’re going to
pivot it over to another topic (the Fold and Cut Theorem) and then maybe drop it.

4. We have shown that, when a triangle tiling is folded along every edge of the tiling, allDD

of the pieces of trajectory line up (Page 17 # 2). You can see this in your folded triangles
from Page 18 # 4.

(a) If you have a tiling billiards trajectory on a tiling (such as your folded triangles), and
you fold along every edge of the tiling, it is possible to make one single straight cut with a
pair of scissors and exactly cut along all of the trajectory edges. Explain.

(b) Cut along the dashed lines, to give you four shapes, each on its own small piece of paper.
For each shape, find a way to fold up the paper so that you could make one straight cut
with a pair of scissors and exactly cut out the shape.
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1. For the square torus, in every cylinderDD

direction there is only one cylinder. For
surfaces made from other polygons, there
can be multiple cylinders. The double
pentagon surface has two cylinders in each
cylinder direction. Here are cylinders on the
double pentagon surface in four directions.

(a) For each set of cylinders shown, consider
a trajectory on the surface, in the cylinder
direction. Write down the cutting sequence
for the trajectory in the light cylinder and
for the trajectory in the dark cylinder.
Think about similarities and differences with our work on the square torus.

(b) The two cylinder decompositions in the top line of the picture are essentially the same,
just in a different direction. Construct a vertical cylinder decomposition of the surface. Is it
the same as any of those shown?

2. Given a polygon that we want to cut out with a single cut (Page 23 # 4), how doDD

we know where to fold? An excellent first ingredient towards figuring this out is called the
skeleton of the polygon. Here’s how to construct it:

(1) Shrink the polygon in such a way that each edge of the shrunken version is equidistant
from the original edge. The picture below shows this process for the square.

(2) Create line segments out of the vertices of the shrinking polygon. The skeleton consists
of these line segments, plus any additional line segments that are left when a polygon shrinks
to area 0. The skeleton for the square is shown in red.

Shrink away from the edges in several of the below polygons, and sketch in the skeleton.
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3. The picture below shows a way of starting with simple vectors and generating moreDD

complicated vectors. Here is how we construct this tree: start with the vector [ 11 ] in the
lower left. At each step, choose to either add the entries together to get a new x-value
(moving right), or choose to add the entries together to get a new y-value (moving up). Fill
in as many entries as you can.

The picture shows the first five levels of an infinite binary tree. A binary tree means that at
this node of the tree, you have two choices of where to go – in this case, right or up. I made
each level smaller than the previous one so that five levels would fit on the page.

4. (Continuation) Let’s explore this tree a bit.DD

(a) Find [ 12 ], [ 32 ], [ 35 ] and [ 85 ] in the tree. Comment on any patterns.

(b) What vectors appear in this tree? Does your birthday vector
[
month
day

]
appear in the tree?

At what level?
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1. Let’s make sure your shearing skills are sharp. (Local sheep, beware!)DD

(a) In the left picture, draw the image of each of the identified lattice points under the
horizontal shear [ 1 1

0 1 ].

(a) In the right picture, do the same for the vertical shear [ 1 0
1 1 ].

2. Ooh, let’s graph more things!DD

(a) Here is a 4-IET. Find the orbit of a point of your choice for at least five or six iterations.

(b) An IET essentially cuts up an interval of points
and reassembles them. So we can think of an IET as
a function that maps points between 0 and 1 to points
between 0 and 1. Graph the function corresponding
to the above 4-IET on the axes to the right.

(c) Use the graph to find the orbit of the same point
that you followed in part (a).
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3. The picture below shows a turtle, which we wish to cut out with a single cut. The leftDD

picture shows the skeleton of the turtle (green part), and the skeleton of the exterior of the
turtle (yellow part), which we get by enlarging the polygon as we did with shrinking. The
skeleton is a good start for how to fold, but it is not the whole story, because (for example)
every vertex of a foldable folding pattern has an even number of edges meeting at it.

So the next part of the story is perpendiculars (right picture). From each vertex of the
skeleton, the idea is that we draw more lines, perpendicular to edges of the turtle. When
we hit an edge of the skeleton, we reflect as in tiling billiards. Look at the right picture and
explain in more detail what is going on and why we want to do this.

This turtle is from Demaine and O’Rourke, Geometric Folding Algorithms (2007) pp. 256–259.

4. The great magician Harry Houdini performed the following trick: take a piece of paper,DD

fold it a few times times, make a single straight cut with scissors, and a five-pointed star
falls out! Figure out how to do this magic trick and then practice it on your friends.

Contextual note 1. Fold and cut puzzles date to at
least 1721, when Kan Chu Sen posed such a problem
in a Japanese puzzle book. The first page gives the
problem; the second gives the solution.

Contextual note 2. Legend has it that when the
original U.S. flag was designed, someone commented
to Betsy Ross that it was going to take forever to cut
out all those stars. “No, it’s easy,” she said, picked
up a piece of scrap cloth, folded it a few times, made
a single cut, and a five-pointed star fell out.
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1. You’ve built up rectangles fromDD

squares. You’ve filled in the binary
tree of relatively prime vectors. Now
let’s look at a third way to generate all
of the relatively prime vectors: shears!

(a) Start with (1, 1) as shown. If you
apply the horizontal shear [ 1 1

0 1 ] to the
red point, you’ll get one new point,
(2, 1) – draw this in orange. If you also
apply the vertical shear [ 1 0

1 1 ] to the red
point, you’ll get one new point (1, 2) –
draw this in orange also.

(b) Now apply the horizontal shear
[ 1 1
0 1 ] to all the existing points (red and

orange) and draw these new points in
yellow. Do the same for the vertical
shear [ 1 0

1 1 ], applying it to all of the pre-
existing red and orange points.

(c) Now apply both the horizontal and vertical shears to the existing red, orange and yellow
points. Draw these new points in green.

(d) Repeat the above for all the existing points. Draw the new points in blue. Continue as
long as you like.

2. (Continuation)DD

(a) Explain the connections between these three ways of generating new points: adding
squares, adding vectors, shearing the plane.

(b) A student asked if there is a name for the set of vectors we get in this way. Suppose
that you are standing at the origin of an infinite orchard, and there is a tree at every lattice
point. One name for the points generated using the method above is visible points. Explain.

3. Let us embark on a new magic trick: cutting andDD

reassembling polygons. Show how to cut up a 1 × 3
rectangle into pieces that can be reassembled into a
square. Use as few pieces as possible.
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4. Let’s get illuminated! The picture to the right shows whatDD

happens when you put a candle in a room: the light radiates out
in every direction. Look closely at the right side of the picture:
this room has a mirror on the wall, so the rays that hit the wall
bounce off, following the billiard reflection law.

You live in a room whose walls are all mirrored. You wish to
illuminate your entire room with a single candle.

(a) Explain why this problem is easy when the room is convex.

(b) Suppose your room is an L-shape made of three squares, as
shown below, and suppose you place the candle somewhere in the
dark square. Does the candle illuminate the whole room? Explain
why or why not.

5. (Optional folding challenge) Fold up the turtle so that you could cut it out with aDD

single cut. The dashed lines show a folding pattern, which is a subset of the “skeleton +
perpendiculars” construction described on the previous page, that suffices for this purpose.

This turtle is from Demaine and O’Rourke, Geometric Folding Algorithms (2007) pp. 256–259.

Spring 2021 26b Diana Davis







Billiards, Surfaces and Geometry

1. More reassembly.DD

(a) Show that, given any triangle, you can cut it into pieces and reassemble it into a
parallelogram. What is the fewest number of pieces you can use?

(a) Show that, given any parallelogram, you can cut it into pieces and reassemble it into a
rectangle. What is the fewest number of pieces you can use?

2. In our earlier work, we sheared the square torus by the matrix [ 1 0
−1 1 ], which transformedDD

it into a parallelogram, and then we reassembled the pieces back into a square, which was a
twist of the torus surface. Below is another way of shearing the square torus (left), this time
via the matrix [ 1 m0 1 ], and reassembling the pieces (right) in such a way that the reassembly
respects the edge identifications. This is indicated with shades of blue.

Consider the L-shaped surface made of three squares, with edge identifications as shown in
the left picture below. We shear it by the matrix [ 1 2

0 1 ], as shown.

Show how to reassemble the sheared surface back into the L surface. Make sure your
reassembly respects the edge identifications.
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3. Our original motivation for studying the square torus was that it was the unfolding ofDD

the square billiard table. In fact, we can view all regular polygon surfaces as unfoldings of
triangular billiard tables. We unfold the (π/2, π/8, 3π/8) triangular billiard table until every
edge is paired with a parallel, oppositely-oriented partner edge:

This gives us the regular octagon surface! So the regular octagon surface is the unfolding of
the (π/2, π/8, 3π/8) triangle.

(a) What triangle unfolds to the double
regular pentagon surface? Make a guess,
then draw the unfolding as above.

(b) Draw the “shooting into the corner”
period-6 trajectory in the triangular billiard
table on the left above. Then unfold it to
a periodic trajectory on the regular octagon
surface.

4. To triangulate a polygon P means to divide it into triangles, whose vertices are theDD

vertices of P , that don’t overlap and whose union is P .

(a) How many different triangulations are there of a hexagon?

(b) Prove that every polygon, including non-convex polygons, can be triangulated.
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Synthesis due – problems in class

1. Celtic knots are a traditional form of decorative art associatedDD

with Ireland. They come in many different shapes, some of which
are related to. . . periodic billiards on the square! Explain the
relationship between billiards and Celtic knots.

2. You are all pretty good at drawing diagrams of periodic billiardDD

trajectories on the square. But how to turn it into a knot? All Celtic
knots are alternating, meaning that if you follow a cord along its
journey, it alternates over, under, over, under. . . as it crosses other
parts of the cord.

(a) Look at the knot diagrams above and convince yourself that
they are alternating.

(b) Some Celtic knots are knots, made from a single cord, and some
are links, made from multiple cords. In the knot diagrams above, which are which?

(c) For the billiard trajectories below, draw in the “crossings” to make the knot alternating.
Then fill in the rest of the parts of the line segments to get the entire knot.

3. With the provided cords, create Celtic knots based on periodic billiard trajectories. CanDD

you make links (“knots” made from multiple cords) out of periodic billiard trajectories?

4. Can you make these out of billiards?DD
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0. For the end of this class, each student will learn about a topic, and then tell the rest of usDD

about it for 5-10 minutes in the last scheduled class plus the test week block. Please ponder
the following topics and come to class on Friday with an idea of which one(s) interest(s) you.

• Any topic of your choice, related to topics from this class.

• Vertex-to-vertex paths on the tetrahedron uses unfolding and tiling; read part of a paper

• Vertex-to-vertex paths on the cube uses the tree of visible points; read part of a paper

• The space of all possible tori made from parallelograms is the upper half-plane known as
Teichmüller space; solve a set of problems by DD

• The space of positions for two point masses colliding elastically on an interval is equivalent
to billiards on a square solve a set of problems from “Geometry and Billiards”

• Rainbows are billiards in a raindrop solve a set of problems

• Tiling billiards on triangle tilings are equivalent to a family of IETs read part of a paper

• How satellite dishes / parabolic reflectors work look it up

• Billiards in a Harkness table shape (“stadium”) is chaotic look it up

• Outer billiards on the half-disk has escaping trajectories read part of a paper

• Outer billiards on the Penrose kite has escaping trajectories read part of a book

• We used the skeleton & perpendiculars method for the Fold and Cut Theorem, which
works almost all the time, but can fail spectacularly; there is a method with circle packings
that works all the time read part of a book

• Any topic of your choice, related to topics from this class.

1. The picture shows a way toRS

cut and reassemble one rectangle
into another, based on a parameter
t. The first step shows that R
can be reassembled to S, and the
second step shows that S can be
reassembled to T . The middle
two pictures are the same, but
emphasize a different decomposition in each copy.

(a) Explain what is going on in the picture.

(b) Start with a 1 × 2 rectangle. For which values of t can you perform this construction?
How about for a 1× r rectangle?

(c) What does the rectangle T look like, at the minimum and maximum values of t?

(d) Explain why the shape of the rectangle T varies continuously with t. In other words, if
you change t a little bit, the shape of T changes a little bit.

(e) Prove that every rectangle can be cut and reassembled to a square.
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2. For a planar domain with reflective boundary (a.k.a a roomST

with mirrored walls), the illumination problem asks: is it possible
to illuminate the domain with a point source of light (a.k.a. a
candle) that emits rays in all directions?

(b) Show that the C-shaped domain made from five squares can
be illuminated. Is there a particular place where you have to put
your candle, to illuminate the whole thing, or does any point
work? Can you illuminate an Exeter “E”?

(c) Big challenge. Try to make up an example of a domain that
cannot be illuminated. This means that, no matter where you
put your candle, some part of the room will still be dark. Note:
We will see one later; the point here is not to struggle all night
or search the internet, but to construct some examples to see that the problem is hard.

3. We have seen that we can can partition a polygon surface into cylinders. The boundaryDD

of a cylinder is a cylinder direction (Page 23 # 2), and there are no vertices inside a
given cylinder. To construct the cylinders, draw a line in the cylinder direction through
each vertex of the surface, which might pass through many polygons before it reaches its
ending vertex. These lines cut the surface up into strips, and then you can follow the edge
identifications to see which strips are glued together. Several examples are shown on the
next page for the double pentagon.

Sketch the horizontal cylinder decomposition, by shading each cylinder a different color, of
each of the surfaces below.

4. An ellipse with foci F1, F2 andST

string length ` consists of all points X
satisfying |F1X| + |XF2| = `. Similarly, a
hyperbola with foci F1, F2 and “imaginary
string length” ` consists of all points X
satisfying |F1X| − |XF2| = ±`.
In Page 7 # 1, we showed that a trajectory
through the foci always passes through the
foci. In Page 9 # 1, we showed that a
trajectory outside the focal segment F1F2

stays outside and is tangent to an ellipse with the same foci. Show that every segment
of a that passes between the foci F1F2 is tangent to a hyperbola with the same foci.
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In the year 1900 at the International Congress of Mathematicians, David Hilbert described
23 problems that were unsolved at the time and, in his view, of major importance. Hilbert is
thought to be the last person who understood all of the mathematics that was known during
the time when that person was alive. His list of problems shaped much of 20th-century
mathematics.

The first problem to be resolved (in 1901 by Max Dehn using “Dehn surgery”) was the 3rd
problem, which asks: Given any two polyhedra of equal volume, is it always possible to cut
the first into finitely many polyhedral pieces that can be reassembled into the second?

1. The two-dimensional version of this problem asks: Given any two polygons of equalDD

volume, is it always possible to cut the first into finitely many polygonal pieces that can be
reassembled into the second? Answer this question: either prove that it is always possible,
or give a counterexample with justification.
Hint : we have done a lot of work in this direction; now put it together.

2. The art gallery problem. Suppose you have an art gallery with priceless masterpieces onST

all of the walls, so you must ensure that each wall is in the view of a security guard. You
wish to employ the smallest possible number of security guards to accomplish this goal.

(a) For the Main Street Hall shape below, show that 8 guards are sufficient. Can you do
better?

(b) Explain how this art gallery problem is different from the illumination problem.
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3. The shears [ 1 1
0 1 ] and [ 1 0

1 1 ] twist the square torus once, as we have seen. The pictureDD

below shows the effect of the matrix [ 1 4
0 1 ] on the square torus, including how to cut up

and reassemble the pieces back into the square torus while respecting edge identifications.
Explain why the shears [ 1 m0 1 ] and [ 1 0

m 1 ] twist the square torus m times.

4. (Continuation) Consider the effect of the shear [ 1 2
0 1 ] on the L-shaped table made of threeDD

squares shown on the left side of Page 29 # 3. How many times does this shear twist each
of its two horizontal cylinders? Why?

5. (Challenge) Alice and Bob are in a square room with mirrored walls. They hate eachDD

other, and they don’t want to see each other at all, through the room or in any reflection in
the walls, looking in any direction. Show that it is possible for Alice and Bob to position a
finite number of their friends in the room so that they cannot see each other (their friends
block their view of the other person). From the 1989 Leningrad Olympiad.

A polygon where finitely many such friends suffice is called a secure polygon.

Hint : Three of the many places where Alice can see Bob in reflection are shown.
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1. In this problem, we will give an upperST

bound on the number of guards required to
guard the priceless artwork on the walls of an
art gallery shaped like an n-sided polygon.

(a) Explain why a guard at the corner of a
triangle can see the entire triangle.

(b) By triangulating your polygon and coloring each of the three vertices of each triangle a
different color, prove that an upper bound for the number of guards required is bn/3c.1

(c) Find the minimum number of guards for each polygon in the figure above.

2. Amazingly, many surfaces made from regular polygons can be sheared, cut up andDD

reassembled back into the original surface in the same way that we have done with the
square and the L. One example is the regular octagon surface, shown below. The way to
reassemble the sheared octagon pieces is indicated with tiny numbers in the pieces.

(a) By coloring each piece of each edge as in Page 30 # 3, show that this reassembly respects
the octagon surface’s edge identifications (shown in Page 29 # 3).

(b) How many times was each horizontal cylinder twisted?

3. One way to pose the illumination prob-ST

lem is: “Is every mirrored room illuminable
from some point in the room?” Here is
a counterexample, a room that cannot be
illuminated from any point inside, shown
to the right. The top and bottom are
half-ellipses, whose foci are at the indicated
points. Explain why this example works,
by explaining which part of the room is
illuminated when the candle is placed:

(a) in the interior of a half-ellipse,

(b) in the middle part, and

(c) in one of the rectangular parts.

Contextual note. Roger Penrose, who contributed to the creation of this “unilluminable
room,” is best known for creating the Penrose tiling, a set of two tiles that only tile the
plane non-periodically. He was knighted in 1994 and won the Nobel Prize in fall 2020.

1Remember that this notation means “n/3, rounded down.”
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4. Do each of the following, by actually cutting up paper, and bring your pieces in to class:DD

(a) Cut up and reassemble a 6× 1 rectangle into a square.

(b) Cut up and reassemble a 30◦-60◦-90◦ triangle into a 3-4-5 triangle.

What is the smallest number of pieces you can use in each case?

Note. The knotted chain mail that bedazzles these shapes is by Frank Farris.
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1. A particularly nice flat surface is the “Golden L,” whose oppositeDD

parallel edges are identified as shown, and whose edge lengths are as
shown in the picture. The indicated number ϕ satisfies the property
that when you cut off the largest possible square from a 1 × ϕ
rectangle, the leftover rectangle has the same proportions as the
original.

(a) Show that this number satisfies the relation ϕ = 1 + 1/ϕ.

(b) Find the continued fraction expansion of ϕ.

(c) Two numbers are rationally related if they are rational multiples of each other. Are the
aspect ratios (known as “moduli”) of the cylinders of the Golden L rationally related?

2. The picture shows the image ofDD

the double pentagon surface under the
shear

[
1 2 cotπ/5
0 1

]
.

(a) Show how to to reassemble (by
translation, and respecting the edge
identifications) the pieces back into the
double pentagon.

(b) Explain why the even-numbered
pieces end up in one pentagon and the
odd-numbered pieces in the other.

(c) By comparing its two horizontal cylinders, show that the
double pentagon surface is a cut, reassembled, and horizontally
stretched version of the Golden L.

3. In your explanation of visible points,DD

some of you asked, “what about surfaces
other than the square?” Arguably, the next-
simplest surface after the square torus is the
golden L. Recall that the visible points in the
square lattice exactly give us the periodic
directions on the square torus.

(a) The dimensions of the golden L are
given above. Write down the components
of the five purple vectors shown (hint: all
their entries are 0, 1 and φ).

(b) Explain why the blue matrix takes the
entire first quadrant to the blue sector.
Repeat for the three other colors.

(c) To generate the set of periodic direc-
tions on the golden L, we start with the vector [ 10 ] and repeatedly apply the blue, green,
yellow and red shears. Write down the first two levels of the tree of visible points / periodic
directions for the golden L (use symmetry whenever possible to reduce your work).
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A big question in the study of trajectories on surfaces is: “what happens to a trajectory
on a surface when you apply a symmetry of the surface?” In Page 8 # 1 we explored the
effects of rotations and reflections on a trajectory on the square torus, and in Page 11 # 1
we showed that the effect of [ 1 0

−1 1 ] is to reduce a trajectory’s slope by 1.

4. Let’s see what happensDD

when we apply the horizontal shear
[ 1 2
0 1 ] to the L-shaped table, with

a short vertical trajectory on it.
The diagram to the right provides
a template for drawing the image
of the trajectory under this shear.
Fill it in and sketch the image of
this trajectory under five applica-
tions of this shear. Then say what
the trajectory would look like if you
sheared the surface many times.
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Here is another way to think about the con-
tinued fraction algorithm, one that generalizes
to other surfaces: Suppose you are about
to make a pool shot on a square billiard
table. You have decided to shoot the ball
in the direction of some vector, for example
[42/5, 6]. You want to know (under idealized
mathematical conditions) how many times the
ball will bounce before it repeats. How do you
do it?

• Divide the first quadrant into two sectors:
blue below the line y = x and red above. Draw
your vector on the plane (shown here in purple).

• If your vector is in the blue sector, apply [ 1 −10 1 ] to it. If your vector is in the red sector,
apply [ 1 0

−1 1 ] to it. Repeat this until your vector is horizontal.

1. Explain how to use this process to get the continued fraction expansion of your trajectory’sDD

slope. Under what conditions will the process terminate (give you a horizontal vector)?

2. How can you use this information to determine the period of your billiard trajectory inDD

this direction?

We can do the same thing for periodic
directions on the golden L: start with a
periodic direction vector. If it is in the yellow
sector, apply the inverse of the yellow matrix;
if it is in the blue sector. . . and so on.
Note that while the picture for the square shown above

is accurate, this picture for the golden L is only an

illustration, as each of these shears greatly expands

the size of vectors, and it’s difficult to see what’s going

on if you draw them to scale.

3. People say “this is essentially the continuedDD

fraction algorithm.” Explain why. If you had
to write down some kind of continued fraction
representation of a periodic direction on the
golden L, how would you do it?

Why do we care about the golden L so much? Because it’s essentially the same surface as the
double pentagon (as we showed in Page 32 # 2c). We want to study the double pentagon,
but it has all those inconvenient angles, while the golden L is made of rectangles. So we
translate our pentagon problem into a golden L problem, solve the problem on the golden L,
and then translate the answer into a pentagon answer.
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4. Theorem (Modulus Miracle). Every horizontal cylinder of a double regular n-gon surfaceDD

the same modulus (“aspect ratio”), which is 2 cotπ/n.

(a) Confirm this for the two surfaces shown, by calculating the ratio w/h for each cylinder.

(b) Explain why this tells us that the horizontal shear
[
1 2 cotπ/n
0 1

]
is always a symmetry of

the double regular n-gon surface.

(c) Why do you think a double regular n-gon was used instead of a single one, like the
familiar regular octagon surface? What happens with the moduli if you do use just one?
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1. In Page 6 # 1, we used patty paper to fold up a trajectory of period 5 on the squareDD

torus into a billiard trajectory of period 10 on the square billiard table. Below is a diagram
showing how to similarly fold up a trajectory of period 4 on the double pentagon surface,
into a billiard trajectory of period 20 on the pentagon billiard table. Fill in the details.

2. In Page 32 # 4, we twisted the L-shaped table horizontally many times, filling up theDD

large cylinder and leaving the small cylinder empty. Below left is a picture of what happens
when you do the same thing to a trajectory on the double pentagon: the large cylinder is
filled up and the small cylinder is empty. Below right is a picture of what happens when
you fold up the trajectory on the left into a trajectory on the pentagon billiard table (as
described in the previous problem). Explain why a star appears.

3. We can label each of the four sectors 0, 1, 2, 3DD

as shown, and use this labeling to specify a periodic
direction on the Golden L.

(a) For example, the purple direction shown in Page 33
# 2 is recorded as “3102.” Explain why.

(b) Let’s go back to continued fractions, and shears
with the square and its two sectors (now labeled 0
and 1, respectively) from Page 33 # 1. Express your
birthday vector month/day using only the digits 0 and
1, according to the shears you use to get there.
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4. In Page 32 # 3, we computed the first two levels of the tree of periodic directions on theDD

Golden L, as direction vectors. Below is the same tree, drawn as the corresponding periodic
billiard trajectories on the regular pentagon billiard table. The branch and node labels use
the notation introduced in the previous problem. Comment on any patterns you notice.

5. So far, we have only drawn pictures of twisting a surface in the horizontal direction. BelowDD

left is a picture of a trajectory on the double pentagon that has been twisted many times
in a direction with a slightly positive slope. The direction of this trajectory is 1000 · · · 0002.
Again, it has filled in the large cylinder and left the small cylinder empty (because that is
what your instructor finds most interesting). Below right is the same trajectory, folded up
into a pentagon billiard trajectory. Trajectories like this seem to be people’s favorite.

Can you figure out how to relate the surface trajectory with the billiard trajectory? The
billiard trajectory seems to have different amounts of “shading” in different areas; can you
say how much darker some are than others?
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