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To the Student

Contents: As you work through this book, you will discover that various topics about
geometry, surfaces and billiards have been integrated into a mathematical whole. There is
no Chapter 5, nor is there a section on ellipses. The curriculum is problem-centered, rather
than topic-centered. Techniques, definitions and theorems will become apparent as you work
through the problems, and you will need to keep appropriate notes for your records — there
are no boxes containing important theorems. You should keep a growing list of important
terms in the Reference at the end of this book.

Your homework: Each page of this book contains the homework assignment for one night.
The first day of class, we will work on the problems on page 1, and your homework is page
2; on the second day of class, we will discuss the problems on page 2, and your homework
will be page 3, and so on for each of the 37 class days of the semester. You should plan to
spend two to three hours each night solving problems for this class.

Comments on problem-solving: You should approach each problem as an exploration.
Reading each question carefully is essential, especially since definitions, highlighted in italics,
are routinely inserted into the problem texts. It is important to make large, clear, accurate
diagrams, and paper models, whenever appropriate. Useful strategies to keep in mind are:
create an easier problem, work backwards, and recall a similar problem. It is important that
you work on each problem when assigned, since the questions you may have about a problem
will likely motivate class discussion the next day.

Problem-solving requires persistence as much as it requires ingenuity. When you get stuck,
or solve a problem incorrectly, back up and start over. Keep in mind that you’re probably
not the only one who is stuck, and that may even include your teacher. If you have taken
the time to think about a problem, you should bring to class a written record of your efforts,
not just a blank space in your notebook. The methods that you use to solve a problem, the
corrections that you make in your approach, the means by which you test the validity of
your solutions, and your ability to communicate ideas are just as important as getting the
correct answer.

The problems in this text

This style of problems is based on the curriculum at Phillips Exeter Academy, a private high
school in Exeter, NH. Some of the problems are taken from Geometry and Billiards by Serge
Tabachnikov, and from Mostly Surfaces by Richard Schwartz. The rest of the problems were
written by Diana Davis, who has been both a student and a faculty member at PEA, for a
senior seminar at Williams College. Anyone is welcome to use this text, and these problems,
so long as you do not sell the result for profit. If you create your own text using these
problems, please give appropriate attribution, as I am doing here.



A note on class discussion

Please be patient with me, and with your classmates, and most of all with
yourself, as everyone adapts to working and learning in this method. I have
carefully constructed this set of problems, thinking hard about each problem
and how they all connect and build the ideas, step by step. Often you will see
the connections. Sometimes you won’t, but a classmate will, and will explain
it to you. Occasionally, everyone will miss the connection and I will have to
rewrite future problems to reflect that. This is the first time any class has
used these problems, so there are bound to be a few errors, of omission or of
overexplanation.

You might wonder, what is my job as your teacher? Part of my job is to give
you good problems to think about, which are in this book. During class, my
job is to help you learn to talk about math with each other, and help you
build a set of problem-solving strategies. At the beginning, I will give you
lots of pointers, and as you improve your skills I won’t need to help as much.

One way of describing this method is “the student bears the laboring oar.”
This is a metaphor: You are rowing the boat; you are not merely along for the
ride. You do the work, and in this way you do the learning. The next page
gives some ideas for ways that you can do this work of moving the “boat,”
which is our class and your learning, forward.

Just remember that we are all in this together. Our goal is for each student
to learn the ideas and skills of geometry, surfaces and billiards, really learn
them — and along the way I will learn new things, too. That’s the beauty of
this teaching and learning method, that it recognizes the humanity in each
of us, and allows us to communicate authentically, person to person.

A college course should teach more than the curriculum: students should also
learn something about how to be good people and good citizens. Many math
courses, in addition to their mathematical content, teach the values of hard
work and perseverance. In this course, through talking with your classmates
about math, and struggling together to solve hard problems, you will learn
that each person has something to contribute, and that the solution may
come from the person you thought was least likely. This is a good life lesson.



Discussion Skills

1. Contribute to the class every day

2. Speak to classmates, not to the instructor

3. Put up a difficult problem, even if not correct

4. Use other students’ names

5. Ask questions

6. Answer other students’ questions

7. Suggest an alternate solution method

8. Draw a picture or build a model

9. Connect to a similar problem

10. Summarize the discussion of a problem
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1. Draw a line on an infinite square grid, and record
each time the line crosses a horizontal or vertical edge.
We will assume that the direction of travel along a line is
always left to right. We could record the line to the right
with the sequence . . . ••••••••••••••. . . , or we could assign
A to horizontal and B to vertical edges, and record it as
. . . BABBABBABBA . . ..

(a) What is the slope of the line in the picture?

(b) Record this cutting sequence of colors, or of As and Bs, for several different lines.
Describe any patterns you notice. What can you predict about the cutting sequence, from
the line?

(c) What should you do if the line hits a vertex?

2. Consider a ball bouncing around inside a square billiard table. We’ll assume that the
table has no “pockets” (it’s a billiard table, not a pool table!), that the ball is just a point,
and that when it hits a wall, it reflects off and the angle of incidence equals the angle of
reflection, as in real life. (We’ll prove this billiard reflection law later.)

(a) A billiard path is called periodic if it repeats, and the period is the number of bounces
before repeating. Construct a periodic billiard path of period 2.

(b) For which other periods can you construct periodic paths?
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1. Draw several examples of billiard trajectories in a circular billiard table. Describe the
behavior in general.

2. Consider a billiard “table” in the shape of an infinite sector with a small vertex angle,
say 10◦. Draw several examples of billiard trajectories in this sector (calculate the angles at
each bounce so that your sketch is accurate). Is it possible for the trajectory to go in toward
the vertex and get “stuck”? Find an example of a trajectory that does this, or explain why
it cannot happen.

3. Outer billiards. Though it may seem strange to call it
“billiards,” we can also define a billiard map on the outside
of a billiard table. We choose a starting point p, and a
direction, either clockwise or counter-clockwise. Then, draw
the tangent line from p to the table in that direction to find
the point of tangency. Double the vector from p to the point
of tangency, and add this to p to get p′, as in the picture.
We repeat the construction to find p′′, and so on.

Draw several examples of outer billiards on a circular table, and describe the behavior in
general.

By the way, outer billiards are sometimes called “dual billiards.” When talking about several
kinds of billiards, you can use the term “inner billiards” for regular billiards.

4. (Continuation) Outer billiards also works on a polygonal
table, of course. Here, the “tangent line” is always through a
vertex − you can think of sweeping a line counter-clockwise
until it hits a vertex, as shown.

Draw several examples of outer billiards on a square table.
Can you find any periodic trajectories? Hint : Make a large,
clear, accurate diagram. Use graph paper and a ruler. Use
a new picture for each trajectory.

5. A powerful tool for understanding
inner billiards is unfolding a trajectory into
a straight line, by creating a new copy of
the billiard table each time the ball hits an
edge. Two steps of the unfolding process are
shown for a small piece of trajectory. Draw
several more steps. Then use this unfolding
to prove that any trajectory with slope 2
yields a periodic billiard trajectory on the
square. (We always assume that one edge is horizontal.) Which other slopes yield a periodic
billiard trajectory?
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1. We have considered a polygonal billiard table. Now consider a billiard ball bouncing
inside a smooth domain D. Assume that D is also convex. Show that there exist at least
two distinct 2-periodic billiard orbits in D.

2. Show that the cutting sequence corresponding to a line of slope 1/2 on the square grid
is periodic. Which other slopes yield periodic cutting sequences? What can you say about
the period, from the slope?

3. Prove that every billiard trajectory on the square with irrational slope is non-periodic.

4. Here’s another way that we can unfold the square
billiard table. First, unfold across the top edge of the
table, creating another copy in which the ball keeps
going straight. The new top edge is just a copy of
the bottom edge, so we now label them both A to
remember that they are the same. Similarly, we can
unfold across the right edge of the table, creating another copy of the unfolded table. The
new right edge is a copy of the left edge, so we now label them both B. When the trajectory
hits the top edge A, it reappears in the same place on the bottom edge A and keeps going.
Similarly, when the trajectory hits the right edge B, it reappears on the left edge B. This
is called identifying (or gluing) the top and bottom edges, and identifying the left and right
edges, of the square.

(a) Label the top and bottom edges of a sheet of paper A, and the left and right edges B,
and tape the identified edges together to create a surface. What does this surface look like?

(b) What does the surface look like to a small bug sitting on edge A? sitting in the middle
of the square? sitting on a corner?

(c) When we unfolded the trajectory to a line, we created a new copy of the table every
time the trajectory crossed an edge. Explain why here we only need 4 copies.

(d) The partial billiard trajectory shown on the left part of the figure repeats after 6 bounces.
Sketch in the rest of the trajectory in each of the three pictures. What is its corresponding
cutting sequence for the surface on the right part of the figure?

5. Consider again a billiard table in the shape of an infinite sector, with vertex angle α.
Show that any billiard on such a table makes finitely many bounces. What is the maximum
number of bounces?
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1. A proof of the billiard reflection law. The Fermat principle says that
light propagates from point A to point B along the path that takes the
least possible time. Since our paths are in the Euclidean plane, this is
just the shortest path. Consider a single reflection in a flat mirror ` (the
horizontal line in the picture), and find the point X along the line that
minimizes the distance AX + XB. Explain how to obtain the billiard reflection law (angle
of incidence equals angle of reflection) as a consequence.

2. (Continuation) Now, let the mirror be a smooth curve `; again, our
goal is to find the point X on ` that minimizes the length AX + XB.
We will use two different methods to deduce the reflection law.

(a) Calculus. Let X be a point in the plane, and define
f(X) = |AX|+ |XB|. The gradient vector of the function |AX| is the
unit vector in the direction from A to X, and likewise for the function |BX. By the Lagrange
multipliers principle, applied to the function under the constraint (fill
these in), X is a critical point if and only if ∇f(X) is orthogonal to `. Use vectors to deduce
the billiard reflection law. Hint : You may have to review Lagrange multipliers. Do it!

(b) Mechanics. Let ` be a wire, X a small ring that can move along the wire without
friction, and AXB an elastic string fixed at A and B and passing through the ring. Use an
equilibrium tension argument to deduce the billiard reflection law.

3. In Page 3 # 4, we ended up with a trajectory of slope 2 on the
square torus surface. The picture to the right shows some scratchwork
for drawing a trajectory of slope 2/5 (or −2/5) on the square torus.
Starting at the top-left corner, connect the top mark on the left edge to
the left-most mark on the top edge with a line segment. Then connect
the other six pairs, down to the bottom-right corner.

(a) Explain why, on the torus surface, these line segments connect up
to form a continuous trajectory. Find the cutting sequence corresponding to this trajectory.

(b) Exactly where on the edges should you place the marks so that all of the segments have
the same slope?

4. (Continuation) In the previous problem, we put 2 marks on edge A and 5 marks on
edge B and connected up the marks to create a trajectory with slope 2/5. What if we did
the same procedure with 4 marks on edge A and 10 marks on edge B?

5. Suppose 100 ants are on a log 1 meter long, each moving either to the left or right
with unit speed. Assume the ants collide elastically (when they hit each other, each ant
immediately turns around and goes the other way), and that when they reach the end of the
log, they fall off. What is the longest possible waiting time until all the ants are off the log?
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1. Draw an accurate picture of a trajectory on the square torus with slope 3/4, and do
the same for two other slopes of your choice. For each one, find the corresponding cutting
sequence. Hint : Use graph paper. You can print out any size you want, from the Internet.

2. We saw that a billiard trajectory on the square table can be unfolded to a line on the
square torus. Going the other way, a line on the square torus can be folded to a billiard
trajectory on the square table. Choose one of your trajectories from the previous problem.
On a loose piece of paper (or a transparency), draw a large accurate picture on a square,
and fold it in half twice, like a paper napkin. Hold it up to the light, and trace through to
see the torus trajectory, transformed into a billiard on the square! Find the corresponding
cutting sequences on the square torus, and on the square table. What are their periods?

3. Consider again a billiard table in the shape of an infinite sector, with vertex angle α. Use
unfolding to show that any billiard on such a table makes at most dπ/αe bounces. Hint :
Unfold the sector as many times as you can.

4. Consider again outer
billiards on the square
table, in the counter-
clockwise direction.

(a) Points p on the blue
lines are not allowed, be-
cause their images p′ are
ambiguously defined. Ex-
plain.

(b) Points p whose image
p′ is on a blue line are
also not allowed. Explain.
These are the inverse im-
ages of the blue points.
Color these points red.

(c) The inverse images of
the red lines are also not
allowed. Explain. Color
these green.

(d) Color the inverse im-
ages of the green points
black. Keep going, with
different colors at each step. Describe the full set of disallowed points.

Note: The resemblance of the (incomplete stages of the) diagram to a swastika is uninten-
tional. By the definition of the outer billiard map, it is unfortunately impossible to avoid.
This symbol was first used 12,000 years ago; the fact that it arises in outer billiards shows
that it is a natural construction that has sadly become synonymous with an odious regime.
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1. Prove that a trajectory on the square torus is periodic if and only if its slope is rational.

2. Billiards in other polygonal tables. You have
constructed several periodic billiard paths in the square
billiard table. Other polygons also have periodic paths.
We will show that the triangle connecting the base
points of the three altitudes of a triangle is a 3-periodic
billiard trajectory, by showing that angles ARP and
CRQ are equal; the argument is the same for the other
bounces.

(a) A classic theorem of geometry says the following:
Opposite angles of a quadrilateral add up to π if and
only if the quadrilateral is cyclic, that is, its four
vertices all lie on the same circle. Make a sketch
showing that that a rectangle is cyclic, while a non-
rectangular parallelogram is not.

(b) Use that theorem to show that quadrilaterals APOR and CROQ are cyclic, as suggested
by the diagram.

(c) Another classic theorem of geometry says that two angles supporting the same circular
arc are equal. Use this to show that ]PAO = ]PRO, and ]ORQ = ]OCQ.

(d) Use triangles BAQ and BCP to show that ]PAO = ]OCQ.

(e) Show that ]ARP = ]CRQ, as desired.

3. In Page 5 # 5, you showed that for outer billiards on the square, all of the points on
the square grid lines are not allowed. Choose a point p that is not on one of the grid lines.
Under the outer billiard map, this point reflects through a sequence of vertices v1, v2, . . .
where each vi is one of the four vertices of the square table. Explain why every point that
is in the same (open) square as p reflects through that same sequence of vertices.

4. The continued fraction expansion gives an expanded expression of a given number,
say 15/11. To obtain the continued fraction expansion for a number, we do the following:

15

11
= 1 + 4

11
= 1 + 1

11/4
= 1 +

1

1 + 7/4
= 1 +

1

2 + 3/4
= 1 +

1

2 +
1

4/3

= 1 +
1

2 +
1

1 +
1

3

.

The idea is to pull off 1s until the number is less than 1, and then take the reciprocal of what
is left, and repeat. Find the continued fraction expansion of 5/7, showing all your steps as
above. By the way, since all the numerators are 1, we can denote the continued fraction
expansion more compactly by recording only the bolded numbers, so 15/11 = [1, 2, 1, 3].
(Soon, we will relate continued fraction expansions to trajectories on the square torus, in a
surprising and beautiful way.)

September 2016 6 Diana Davis



Math 424: Billiards, Surfaces and Geometry

11

15

1. Geometrically, the continued fraction algorithm for a
number x is:

1. Begin with a 1× x rectangle (or p× q if x = p/q).

2. Cut off the largest possible square, as many times as
possible. Count how many squares you cut off; this is
a1.

3. With the remaining rectangle, cut off the largest possible
squares; the number of these is a2.

4. Continue until there is no remaining rectangle. The con-
tinued fraction expansion of x is then [a1, a2, . . .].

Draw the rectangle picture for 5/7 and geometrically compute its continued fraction expan-
sion, and check that it agrees with your previous results. Explain why this geometric method
is equivalent to the fraction method previously explained, for determining the continued
fraction expansion.

2. You have seen that studying a line on the square grid is essentially the same as studying
a straight trajectory on the square torus. Explain how to go from one to the other, in both
directions.

3. An automorphism of a surface is a bijective action that takes the surface to itself.
Two types of automorphisms of the square torus come from symmetries of the square itself:
reflections and rotations. (Remember these from the beginning of your abstract algebra
course, when you studied the dihedral groups: they are the rigid motions that take the
square to itself.) How many symmetries of the square are there? Which of them can you
visualize on the “surface of a donut” 3D torus surface?

4. An active area of research is to describe all possible cutting sequences on a given surface.
On the square torus, that question is: “Which infinite sequences of As and Bs are cutting
sequences corresponding to a trajectory?” Let’s answer an easier question: How can you tell
that a given infinite sequence of As and Bs is not a cutting sequence? You have computed
many examples of cutting sequences that do correspond to a line on the square grid or square
torus. Write down four of them. Then make up an example of an infinite sequence of As
and Bs that cannot be a cutting sequence on the square grid or square torus, and justify
your answer.

5. Consider again the altitude construction of a 3-periodic path in a triangle. Sketch a
trajectory that is parallel to the one in the construction, but that starts a small distance
from the base point of the altitude. Show that this trajectory is also periodic, and find its
period.
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1. Periodic trajectories in triangles.

(a) Explain why the altitude construction of a 3-periodic path
only works for acute triangles.

(b) Prove that the figure does indeed depict a 6-periodic billiard
trajectory in a right triangle. This construction was found by Rich Schwartz (DD’s Ph.D.
advisor). He calls it “shooting into the corner.”

(c) Does every obtuse triangle have a periodic billiard path? This question is open, and is
the subject of current research. The answer is known to be “yes” for many cases. Find an
example of a periodic path in an obtuse triangle.

2. Construct a periodic billiard path on the square table with an odd period, or show that
it is not possible to do so.

3. Explain why a cutting sequence on the square torus can have blocks of multiple As
separated by single Bs, or blocks of multiple Bs separated by single As, but not both.

4. It turns out that there are three types of automorphisms of the square torus: reflections
and rotations, which you explored in Page 7 # 3, plus one more type that is not a symmetry
of the square: a shear. The shear is shown below on the square on and the 3D surface, where
its effect is to twist the torus. Explain. What 2 × 2 matrix, applied to the “unit square”
[0, 1]× [0, 1] shown in the left picture, gives the parallelogram shown in the middle picture?
(Recall from linear algebra that the first column of a 2×2 matrix is the image of [ 10 ] and the
second column is the image of [ 01 ]. Assume that (0, 0) is at the square’s lower-left corner.)

5. We have identified the top and bottom edges, and the left and right edges, of a
square to obtain a surface: the square torus. If we identify opposite parallel edges of a
parallelogram, what surface do we get?
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1. Given a trajectory on the square torus, we want to know what happens to that trajectory
under an automorphism of the surface. One way to answer this question is to sketch the
trajectory before and after applying the automorphism. Another way is by comparing their
cutting sequences: the cutting sequence c(τ) corresponding to the original trajectory τ , and
the cutting sequence c(τ ′) corresponding to the transformed trajectory τ ′.

(a) Let τ2 be the trajectory of slope 2. Sketch τ2, and find c(τ2).

(b) For each automorphism (1)-(5) below, sketch τ ′2, and compute c(τ ′2).

(c) Explain how to obtain c(τ ′) from c(τ) for a general trajectory τ , for each automorphism.

(1) reflection across a horizontal line;

(2) reflection across a vertical line;

(3) reflection across the positive diagonal;

(4) reflection across the negative diagonal;

(5) rotation by 90◦.

2. (Continuation) Find the 2 × 2 matrix that performs each of these five automorphisms.
For the purpose of this question, assume that the square torus is centered at the origin, so
it is [−1, 1] × [−1, 1] or a dilate thereof. Find the determinant of each matrix and explain
why they are all ±1.

3. Show that a periodic trajectory on a polygonal billiard table is never isolated: an
even-periodic trajectory belongs to a 1-parameter family of parallel periodic trajectories of
the same period and length, and an odd-periodic trajectory is contained in a strip consisting
of trajectories whose period and length is twice as great. Hint : Think about a wide ribbon
whose center line is the trajectory, wrapping around the triangle.

4. Find the continued fraction expansion of
√

2 − 1. (Use a calculator to deal with the

decimals.) Then solve the equation x = 1
2 + x

and explain how these are related.

5. Tiling billiards. The final type of billiards (besides inner
and outer) that we will study is tiling billiards, where a trajectory
refracts through a tiling of the plane. The refraction rule is that
when the trajectory (thick) hits an edge of the tiling (thin), it
passes through in such a way that the angle of incidence is equal to
the angle of reflection, and the trajectory has been reflected across
the edge, as shown to the right. Sketch some (clear, accurate)
trajectories on the square grid tiling. What kinds of behaviors
can you find? Can you prove that these are the only ones?
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1. We saw that for tiling billiards
on the square grid, there are only two
types of trajectories: those that go to
the opposite edge and zig-zag, and those
that go to the adjacent edge and make
a 4-periodic path. How many types of
trajectories are there for tiling billiards
on the triangular grid?

2. How many billiard paths of period
10 are there on the square billiard table?
Of period 14? Construct (make a math-
ematically accurate sketch of) each of
these.

3. Find the continued fraction expansions of 3/2, 5/3, 8/5, and 13/8. Describe any
patterns you notice, and explain why they occur.

In the following problems, we will determine the effect of the shearing automorphism from
Page 8 # 4 on a trajectory τ and its cutting sequence c(τ).

4. First, we will apply symmetry to reduce our work to just one set of trajectories. Show
that, given a linear trajectory in any direction on the square torus, we can apply rotations
and reflections so that it is going left to right with slope ≥ 1.

5. Since we have reduced to the case of slopes that are ≥ 1, we will analyze the effect of
the shear [ 1 0

−1 1 ], because they work nicely together. Later we will show that everything else
can be reduced to this case.

As an example, we’ll use the trajectory τ
with slope 3/2, with corresponding cutting
sequence c(τ) = BAABA (left picture). We
shear it via [ 1 0

−1 1 ], which transforms the
square into a parallelogram (middle picture),
and then we reassemble the two triangles
back into a square torus, while respecting
the edge identifications (right picture). The
new cutting sequence is c(τ ′) = BAB.

Do this geometric process for three different trajectories τ of your choice: Sketch a trajec-
tory τ , sketch its image as a parallelogram after shearing by [ 1 0

−1 1 ], and then sketch the
reassembled square with the new trajectory τ ′. For each, record c(τ) and c(τ ′). Try to find
the pattern: a rule to get c(τ ′) from c(τ). Hint : You can use the “edge marks” technique
from Page 4 # 3 on the parallelogram edges to make an accurate picture.
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1. The purpose of this
problem is to prove the “de-
composition into necklaces”
shown on the next page,
for outer billiards on the
square.

In Page 5 # 4, we showed
that all of the lines in the
square grid are not allowed:
the images of points on the
blue lines are ambiguously
defined, because they could
reflect through two differ-
ent vertices of the square.
The inverse images of the
blue points (red) are thus
not allowed, nor the inverse
images (green) of those, nor
the inverse images (black)
of those, nor the inverse
images (purple) of those...

(a) Plot the trajectories of the blue, pink and green points under the outer billiards map.
They are all periodic, so keep going until you get back to the original point.

(b) Write down the sequence of corners reflected through, for each point: A,B,D, . . .

(c) Prove the following statement: Two points in the same square reflect through the same
sequence of corners. Points in different squares reflect through a different sequence of corners.

(d) How do you know the first place where the sequences will differ?

2. Prove that a trajectory with slope p/q (in lowest terms) on the square billiard table
has period 2(p + q). Note: We have stated this in class several times, with several different
arguments; the goal here is to write down a clear, rigorous proof.

3. (Continuation of Page 10 # 5) Show that if we apply the shear [ 1 0
−1 1 ] to the square

torus:

(a) The effect on the slope of a trajectory is to decrease it by 1.

(b) The effect on the cutting sequence corresponding to a trajectory whose slope is greater
than 1 is to remove one A between each pair of Bs.

4. Find the first few steps of the continued fraction expansion of π. Explain why the
common approximation 22/7 is a good choice. Then find the best fraction to use, if you
want a fractional approximation for π using integers of three digits or fewer.
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1. In Page 11 # 1, we showed
that for the outer billiard map
on the square, points in a
given square in the grid move
together. Now we will explore
how they move.

(a) Plot the complete orbit
(meaning, until you get back
to where you started) of the
R and of the winky face under
the outer billiard map. One
step is shown for the R.

(b) Prove that the square of
the outer billiard map (this
means that you apply it twice)
is a translation.

2. We need one more piece
in order to relate trajectories
on the square torus, continued
fractions, and cutting sequences.
Show that if we apply the flip [ 0 1

1 0 ] to the square torus:

(a) The effect on the slope of a trajectory is to take its reciprocal.

(b) The effect on the cutting sequence corresponding to a trajectory is to switch As and
Bs.

3. If we identify opposite
parallel edges of a hexagon,
what surface do we get? The
figure to the right shows one
way to figure it out, via a cut-
and-paste approach. Explain.

An alternative approach is to
sketch what it looks like to
glue identified edges together,
assuming that the hexagon is made out of stretchy material. Try this, too.

4. In the picture above, we tiled the plane with a hexagon that has three pairs of opposite
parallel edges. Our “random” hexagon happened to be convex. Does a non-convex hexagon
with three pairs of opposite parallel edges still tile the plane?

5. Prove that the continued fraction expansion of a number terminates (stops) if and only
if it is rational.
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1. The figure to the right shows
the altitude construction of a 3-periodic
billiard path in the 40-60-80 triangle. In
Page 9 # 3 we claimed that this path is
part of a “strip,” or “family,” of nearby
parallel billiard trajectories of period 6.
Using a cutout of this triangle and a
large blank piece of paper, unfold this
trajectory, tracing a new copy of the
triangle at each edge crossing, until the new triangle is a translation of the original triangle.

(a) Sketch the “strip” of parallel billiard trajectories on your unfolding. How wide can you
make the strip − what constrains its width?

(b) Choose one trajectory in this strip, other than the original billiard path, and “fold” it
back up, i.e. sketch it on the triangle above. Comment on any patterns you notice.

2. Starting with a trajectory on the square torus with positive slope, apply the following
algorithm:

1. If the slope is greater than or equal to 1, apply the shear [ 1 0
−1 1 ].

2. If the slope is between 0 and 1, apply the flip [ 0 1
1 0 ].

3. If the slope is 0, stop.

An example is shown below.

We can note down the steps we took: shear, flip, shear, shear. We ended with a slope of 0.
Work backwards, using this information and your work in Page 11 # 3a and Page 12 # 2a,
to determine the slope of the initial trajectory. Keep track of each step.

3. (Continuation) Translate the algorithm in the previous problem, which uses the slope of
a trajectory, into an algorithm that uses the cutting sequence corresponding to a trajectory.
You should translate each of the four sentences (“Starting with. . . ,” 1, 2 and 3.) Then apply
your algorithm to the cutting sequence ABAAB and check that your results are consistent
with the pictures in the figure above. Hint : use the part b’s.

4. Suppose that a given periodic cutting sequence on the square torus has period n. Are
there any values of n for which you can determine the cutting sequence (perhaps up to some
symmetry) from this information?

5. Let P be a convex quadrilateral that has a 4-periodic inner billiard trajectory that
reflects consecutively in all four sides. Prove that P is cyclic. Hint : reread Page 6 # 2a.
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1. Apply the geometric algorithm from Page 13 # 2 to the trajectory
shown to the right. Note down the steps you take (shears and flips) and
use this information to work backwards from an ending slope of 0 to
determine the slope of the initial trajectory. Show all of your steps.

2. (Continuation) Explain how shears and flips on the square torus are
related to continued fraction expansions.

3. (Continuation) Find the cutting sequence corresponding to the trajectory above.
Apply your algorithm from Page 13 # 3 to it, and check that your results at each step are
consistent with each step of your work in problem 1.

4. We can create a surface by identifying opposite parallel edges of a single polygon, as we
have done with the square and hexagon. We can do the same with two polygons, or with
any number of polygons. We’ll call such a surface a polygon surface. Some examples are
below. Edges with the same letter are identified, as with A and B on the square torus. The
two polygons on the right side together form a single surface.

(?)

Make up your own example of a polygon surface that is different from everyone else’s, made
from three polygons. We will call your new surface S. How many edges does S have?
(For a sense of what it would be like to live on the double pentagon surface, watch the short
video http://www.tinyurl.com/doublepentagon.)

5. Consider a billiard trajectory in the unit circle, where at each impact the trajectory
makes angle α with the circle.

(a) Find the central angle θ from the circle’s center, between each impact point and the
next one, as a function of α.

(b) Prove that if θ = 2πp/q for some p, q ∈ N, then every billiard orbit is q-periodic and
makes p turns around the circle before repeating.

(c) Prove that if θ is not a rational multiple of π, then the orbit of every point is dense:
every interval on the circle contains points of its orbit. Hint : Review your Real Analysis
book for examples of one set that is dense in another, to make sure that you understand the
question.
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1. For a natural number p, how many periodic billiard paths (up to symmetry) of period
2p are there on the square billiard table? Check your answer with your previous results.

2. Another way to count billiard trajectories in the square is to ask how many periodic
trajectories of length less than L it has. This question should be understood properly:
Periodic trajectories appear in parallel families; we will count the number of such families.

(a) How long is the trajectory of slope 2? The trajectory of slope 1/3?

(b) Show that the number of periodic families of length less than L is approximately πL2/8.

3. Given that the continued fraction expansion of a particular number is [0; 1, 2, 2], find
the cutting sequence corresponding to a trajectory on the square torus with this slope.

4. Vertex chasing. To explain how to
count the vertices of a surface, we will use
the square torus. First, mark any vertex
(say, the top left). We want to see which
other vertices are the same as this one. The
marked vertex is at the left end of edge A, so we also mark the left end of the bottom edge
A. We can see that the top and bottom ends of edge B on the left are now both marked, so
we mark the top and bottom ends of edge B on the right, as well. Now all of the vertices
are marked, so the square torus has just one vertex. (We already knew that − how?)

Determine the number of vertices for a hexagon with opposite parallel edges identified. Do
the same for each surface in Page 14 # 4, and for your surface S created in the same problem.

5. In Page 12 # 3, we showed how a hexagon can be cut into 4 pieces and reassembled
into a parallelogram, while respecting the edge identifications. For the moment, let’s forget
about surfaces and just cut and reassemble polygons. Show how to dissect a 1× 3 rectangle
into pieces that can be reassembled into a square. Use as few pieces as possible.

6. As mentioned in Page 7#4, an active area of research is to describe, or “characterize,”
all possible cutting sequences on a given surface. Now we can do this for the square torus.

Theorem. Valid cutting sequences on the square torus are those that do not fail under the
following algorithm:

Starting with an infinite sequence of As and Bs, apply the following algorithm:

1. If there are multiple Bs separated by single As, switch As and Bs.

2. If there are multiple As separated by single Bs, remove an A between each pair of Bs.

3. If the sequence has AA somewhere and BB somewhere else, stop; it fails to be a valid
cutting sequence.

Earlier in the course, students conjectured that a cutting sequence could only have two
consecutive numbers of As, such as 2 and 3, between each pair of Bs, e.g. BABAAA
is not allowed. Use the theorem to prove this conjecture true. Start by writing down a
clear statement of the result. Make sure that your argument works for aperiodic sequences
corresponding to irrational slopes.
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1. Consider again the theorem in Page 15 # 6.

(a) The vexing part of this characterization is that it doesn’t have a step saying, “Stop!
Congratulations; you have a valid cutting sequence.” It only says, “Keep going; your cutting
sequence hasn’t proven to be invalid yet.” But it turns out that it’s the best we can do.
Explain why this algorithm does stop for a periodic cutting sequence.

(b) I left out one technical point of the theorem: It actually characterizes the closure of
the space of all cutting sequences. Valid cutting sequences are in the interior of the space,
and cutting sequences such as . . . AAABAAA . . . are on the boundary of the space. Explain
why this cutting sequence does not fail in the algorithm, and why it is not a valid cutting
sequence. Find another cutting sequence on the boundary, other than . . . BBBABBB . . ..

2. Once we’ve made a surface, the Euler characteristic gives us a way of easily deter-
mining what kind of surface we obtain, without needing to come up with a clever trick
like cutting up and reassembling hexagons into parallelograms. Given a surface S made by
identifying edges of polygons, with V vertices, E edges, and F faces, its Euler characteristic
is χ(S) = V − E + F . Find the Euler characteristic of the square torus, the cube, the
tetrahedron, and the hexagon surface.

3. (Continuation) One of the main goals
of the field of topology is to classify surfaces
by their genus, which, informally speaking,
is the number of “holes” it has. The surfaces
to the right have genus 1, 2 and 3.

We can use the Euler characteristic to determine the genus of a surface: A surface S with
genus g has Euler characteristic χ(S) = 2− 2g. Use this to find the genus of the square
torus, the cube, the tetrahedron, the surfaces in Page 14 # 4, and your surface S.

4. In previous courses, you have described an ellipse
algebraically. Geometrically, you can construct it as follows
(actually do this): Take a length of string and have your friend
hold down the two endpoints, so that the string is somewhat
loose. With your pencil, pull out the string until it is taut and
trace out all the points the pencil can reach, as shown. Each of
the two endpoints of the string is called a focus of the ellipse.
Show that a billiard trajectory through one focus reflects through the other focus.

5. Imagine that you are a tiny creature living on a smooth surface, and you are trying to
determine whether you are living on a sphere or a torus. Each day, you plant a stake into
the ground, tie one end of a ball of yarn to the stake, and go for a very long walk, letting
out yarn as you go. When you return to the stake, you wind the yarn back onto the ball.
Explain how this type of experiment would help you determine the genus of your planet.
Can you devise an experiment to differentiate between planets of genus 1 and 2?
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1. Walking around a vertex. We can determine the
angle around a vertex by “walking around” it, as shown
in the figure for a hexagon with opposite parallel edges
identified. The left picture shows that the angle around

the black vertex is 3 · 2π
3

, and the right picture shows the

same for the white vertex. Explain what is going on.

Since the black and white vertices each have 2π of angle around them, all the corners of the
hexagon surface come together in a flat plane. (We already knew that − how?)

Find the angle around each vertex of the surfaces in Page 14 # 4, and for your surface S.

2. (Continuation) A surface is called flat if it looks like the flat plane everywhere, except
possibly at finitely many cone points (vertices), where the angle around each vertex is a
multiple of 2π. Prove that if a surface is created by identifying opposite parallel edges of a
collection of polygons, then it is flat. (If you were not able to do problem 1 for your surface
S because you didn’t know its angles precisely, go back and do it with this result in hand!)

3. Reconsider the question about billiard trajectories of length L.

(a) Explain why the number of lattice points inside a disc of radius L is approximately πL2,
especially when L is large.

(b) Use this to prove Page 15 # 2(b).

4. A parabola is the set of points that are equidistant from a given point (the focus) and a
given line (the directrix).

(a) What are the focus and the directrix for our favorite parabola, y = x2?

(b) Prove that a billiard trajectory through the focus of a parabola reflects to a ray parallel
to the axis of the parabola.

5. Here is our dream: To understand the effect of every automorphism of the square torus,
on the cutting sequence corresponding to a trajectory. Here is our progress so far:

1. There are three types of automorphisms: rotations, reflections and shears. We under-
stood the effects of rotations and reflections in Page # . (fill these in)

2. Using rotations and reflections, we reduced our work, now only for shears, to the case
of trajectories whose slope is in [1,∞) in Page # .

3. We understood the effect of the matrix [ 1 0
−1 1 ] on a trajectory on the square torus in

Page # . By the way, we used [ 1 0
−1 1 ] because it works nicely with trajectories

whose slope is in [1,∞): it makes them simpler, like taking a derivative in calculus,
while [ 1 0

1 1 ] makes them more complicated, like taking an integral.
Find the analogous effects on slopes of trajectories, of the matrices [ 1 0

1 1 ] , [ 1 1
0 1 ] and [ 1 −10 1 ].

6. (Continuation: a challenging problem) There is just one more step, to show that every
shear can be reduced to the ones we understand. Prove the following:

4. Every 2× 2 matrix with nonnegative integer entries and determinant 1 is a product of
powers of the shears [ 1 1

0 1 ] and [ 1 0
1 1 ]. For example, [ 3 7

2 5 ] = [ 1 1
0 1 ] [ 1 0

1 1 ]2 [ 1 1
0 1 ]2.
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1. For each of the following, construct a surface, made from polygons with parallel edges
identified, with the given property, or explain why it is not possible to do so:

(a) One of the vertices has angle 6π around it.

(b) One of the vertices has angle π around it.

(c) Two of the vertices have different angles around them.

2. What does it look like to have 6π of angle at a
vertex? Cut slits in three sheets of paper, and tape the
edges together as shown. The vertex angle at the white
point is now that of three planes, which is 6π. Bring your
taped paper in to class.

A

A B

C

D D

3. In Page 8 # 4, we sheared the
square torus by the matrix [ 1 0

−1 1 ], which
transformed it into a parallelogram, and
then we reassembled the pieces back into
a square, which was a twist of the torus
surface. We can apply the same kind of
transformation to many other surfaces. Consider the L-shaped surface made of three squares,
with edge identifications as shown in the left picture. We shear it by the matrix [ 1 2

0 1 ], cut
it into pieces, and then reassemble, by translation only, the pieces back into the L shape.
Show how to do this. Make sure your reassembly respects the edge identifications.

4. One reason that people study cutting sequences on the square torus is that they have
very low complexity: The complexity function f(n) on a sequence is the number of different
“words” of length n in the sequence. One way to think about complexity is that there is a
“window” n letters wide that you slide along the sequence, and you count how many different
things appear in the window.

(a) What is the highest possible complexity for a sequence of As and Bs? For this question,
consider all possible sequences of As and Bs, not just cutting sequences.

(b) Confirm that the cutting sequence ABABB has complexity f(n) = n+1 for n = 1, 2, 3, 4
and complexity f(n) = n for n ≥ 5.

(c) Prove that a periodic cutting sequence on the square torus with period p has complexity
f(n) = n+ 1 for n < p and complexity f(n) = n for n ≥ p.

(d) Aperiodic sequences on the square torus are called Sturmian sequences. Show that
Sturmian sequences have complexity f(n) = n+ 1.

5. For a polygon surface (Page 14 # 4), a cylinder direction is a direction of any trajectory
that goes from a vertex to another vertex, possibly crossing many polygons.

What are the cylinder directions for the square torus?
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1. A caustic of a planar billiard table is a curve such that, if a billiard trajectory is tangent
to it, then the billiard trajectory is tangent to it after every reflection. Show that the caustic
of a circle is another circle, and find its radius as a function of the angle α between the
billiard trajectory and the (tangent line to the) circle.

2. We can partition a polygon surface into cylinders. The
boundary of a cylinder is a cylinder direction (Page 18 # 5),
and there are no vertices inside a given cylinder. To construct
the cylinders, draw a line in the cylinder direction through each
vertex of the surface, which might pass through many polygons
before it reaches its ending vertex. These lines cut the surface up into strips, and then you
can follow the edge identifications to see which strips are glued together. Several examples
are shown on the next page for the double pentagon.

Sketch the horizontal cylinder decomposition, by shading each cylinder a different color, of
each of the following surfaces: the square torus, the regular octagon, the L-shaped table from
Page 18 # 3, and the regular hexagon for each of the orientations shown.

3. (Continuation) The modulus of a cylinder is the ratio of its width to its height. The
width and height are measured parallel to, and perpendicular to, the cylinder direction. Find
the modulus of each cylinder for each cylinder decomposition in the previous problem.

4. Consider the counter-clockwise outer
billiard map on the triangular billiard
table, as shown. Explain why points on
the blue lines are not allowed. Then sketch
the inverse images (red) of the blue lines,
the inverse images (green) of the red lines,
the inverse images (black) of the green
lines, the inverse images (purple) of the
black lines, and so on.

5. Consider a tiling billiards trajectory
that crosses an edge e of the tiling.

(a) Show that, if you fold the tiling along
edge e, the two pieces of trajectory that
intersect edge e lie on top of each other.

(b) Check this result by folding up your trajectories on the equilateral triangle tiling from
Page 10 # 1. Can you fold all the edges of a trajectory onto each other at once?

6. (Challenge) Alice and Bob are in a square room with mirrored walls. They hate each
other, and they don’t want to see each other at all, through the room or in any reflection in
the walls, looking in any direction. Show that it is possible for Alice and Bob to position a
finite number of their friends in the room so that they cannot see each other (their friends
block their view of the other person). From the 1989 Leningrad Olympiad.
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1. Here are cylinder decompositions of
the double pentagon surface in four different
directions.

(a) For each decomposition shown, consider
a trajectory on the surface, in the cylinder
direction. Write down the cutting sequence
for the trajectory in the light cylinder and
for the trajectory in the dark cylinder.
Think about similarities and differences with
our work on the square torus.

(b) The two cylinder decompositions in the top line of the picture are essentially the same,
just in a different direction. Construct a vertical cylinder decomposition of the surface. Is it
the same as either of those in the bottom line of the picture?

2. Theorem (billiards in an ellipse).
Consider an ellipse E with foci F1, F2. If
some segment of a billiard trajectory does
not intersect the focal segment F1F2 of E,
then no segment of this trajectory intersects
F1F2, and all segments are tangent to the
same ellipse E ′ with foci F1 and F2.

(a) Consider the billiard trajectory A0A1A2

in the larger ellipse E shown in the figure.
Explain why ∠A0A1F1 = ∠A2A1F2.

(b) Reflect F1 across A0A1 to create F ′1, and reflect F2 across A1A2 to create F ′2. Explain
why ∠A0A1F

′
1 = ∠A0A1F1 and ∠A2A1F

′
2 = ∠A2A1F2.

(c) Show that ∆F ′1A1F2 and ∆F1A1F
′
2 are congruent.

(d) Mark the intersection of F ′1F2 with A0A1 as B, and the intersection of F1F ′2 with A1A2 as
C. Show that the string length |F1B|+ |BF2| is the same as the string length |F1C|+ |CF2|.
(e) Prove the theorem as stated above.

3. A dissection of a polygon P is a description of P as the union P = P1 ∪ · · · ∪ Pn of
smaller polygons, no two of which overlap. In other words, we cut up P into n polygonal
pieces. Two polygons P and P ′ are dissection equivalent if there are dissections P =

⋃n
i=1 Pi

and P ′ =
⋃n
i=1 P

′
i such that Pi and P ′i are congruent for each i. In other words, you can cut

up P into polygonal pieces and reassemble them into P ′. In this case we say P ∼ P ′.

(a) Explain why the 1× 3 rectangle is dissection equivalent to a
√

3×
√

3 square.

(b) Prove that ∼ is an equivalence relation. (This requires proving that the relation is
reflexive, symmetric and transitive. If you don’t remember the definitions, look it up.)

(c) Show that every triangle is dissection equivalent to a parallelogram. What is the fewest
number of pieces you can use?
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1. The shears [ 1 1
0 1 ] and [ 1 0

1 1 ] twist the square torus once, as we have seen (Page 8 # 4).
Draw a picture showing the effect of [ 1 4

0 1 ] on the square torus, including how to cut up and
reassemble the pieces back into the square torus while respecting edge identifications. Then
explain why the shears [ 1 m0 1 ] and [ 1 0

m 1 ] twist the square torus m times.

2. (Continuation) Consider again the effect of the shear [ 1 2
0 1 ] on the L-shaped table − how

many times does this shear twist each of its cylinders? Why?

3. The figure shows a periodic tiling billiards
trajectory on a triangle tiling. Cut off (on the
separate page you received) the shaded part and then
fold along all the edges of the tiling, in such a way that
every part of the trajectory lies on a single line. Notes:
This may take you a while. Don’t give up. Bring your
folded triangles in to class. Save your folded triangles,
as we will use them in subsequent problems.

4. Show that every parallelogram is dissection equiv-
alent to a rectangle. What is the fewest number of
pieces you can use?

5. To triangulate a polygon P means to partition it into triangles, whose vertices are the
vertices of P , that don’t overlap and whose union is P .

(a) How many different triangulations are there of a hexagon?

(b) Prove that every polygon, including non-convex polygons, can be triangulated.

6. For a planar domain with reflective boundary, the illumination problem asks: is it possible
to illuminate the domain with a point source of light that emits rays in all directions? You
can think of this as a candle in a mirrored room.

(a) Explain why this problem is only interesting for non-convex domains.

(b) Prove that the C-shaped domain made from five squares can be illuminated. Is there
a particular place where you have to put your candle, to illuminate the whole thing, or
does any point work?

(c) Big challenge. Try to make up an example of a domain that cannot be illuminated. This
means that, no matter where you put your candle, some part of the room will still be dark.
Note: We will see one later; the point here is not to search the internet, but to construct
some examples to see that the problem is hard.

7. What is the caustic of a billiard trajectory in an ellipse?
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1. A set of numbers is rationally related if all of the numbers are rational multiples of each
other. Give an example of a set that is rationally related, and of one that is not.

1

1

φ

φ

2. A particularly nice flat surface is the “Golden L,” whose opposite
parallel edges are identified horizontally and vertically in the same way
as in Page 18 # 3, and whose edge lengths are as shown in the picture.

(a) Find the number ϕ satisfying the property that when you cut off
the largest possible square from a 1×ϕ rectangle, the leftover rectangle
has the same proportions as the original.

(b) Show that this number satisfies the relation ϕ = 1 + 1/ϕ.

(c) Are the moduli of the cylinders of the Golden L rationally related?

(d) Find the continued fraction expansion of ϕ.

3. Start with a parallelogram, and add a diagonal to break it into two triangles T1 and T2.
Fold the parallelogram along this diagonal. Prove that, in this folded state, the circumcenter
of T1 and the circumcenter of T2 coincide. (Circumcenter : if you don’t know, look it up.)

4. Amazingly, many surfaces made from regular polygons can be sheared, cut up and
reassembled back into the original surface in the same way that we have done with square-
tiled surfaces. One example is the regular octagon surface, shown above. What shearing
matrix was applied to the surface? How many times was each cylinder twisted? Why?

5. The picture shows a two-step
construction of dissection equiva-
lence, based on a parameter t. The
first step shows that R ∼ S, and
the second step shows that S ∼ T .
The middle two pictures are the
same, but emphasize a different
decomposition in each copy.

(a) Explain why the shape of the rectangle T varies continuously with t.

(b) Start with a 1 × 2 rectangle. For which values of t can you perform this construction?
How about for a 1× r rectangle? Hint : Actually do this, with paper and scissors and tape.

(c) What does the rectangle T look like, at the minimum and maximum values of t?

(d) Prove that every rectangle is dissection equivalent to a square.
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1. The figure shows a surface called the eierlegende
Wollmilchsau (for a fun time, Google image search this term).

(a) Sketch each vertical cylinder a different color, and find the
modulus of each.

(b) Redraw the surface so that at least one vertical cylinder is
arranged all in a vertical column, just as the horizontal cylinder
with a G on each end is arranged all in a horizontal row in the
figure.

(c) Find the number of vertices, edges and faces of the surface, and its genus.

(d) For which values of m is the shear [ 1 0
m 1 ] an automorphism of the surface? and for [ 1 m0 1 ]?

2. Definition. The double
regular n-gon surface is the surface
made by identifying opposite par-
allel edges of two regular n-gons,
one of which is the reflection of the
other. We assume that each n-gon
has a horizontal edge, and that all
edges have unit length.

(a) Find the modulus of each horizontal cylinder, for the double hexagon surface and for
the double octagon surface (shown above).

(b) Repeat part (a), for cylinder directions θ = π/6 and θ = π/8, respectively.

(c) Choose another double n-gon surface, with n ≥ 5, and sketch it. Find the modulus of
each of its horizontal cylinders.

3. Hilbert’s 3rd problem asks: Given any two polyhedra of equal volume, is it always
possible to cut the first into finitely many polyhedral pieces that can be reassembled into the
second?

(a) Read the history of Hilbert’s 23 problems online or in a book, find out why they are
important, and find something that is unique about the 3rd problem.

(b) Answer Hilbert’s question for the two-dimensional case, of polygons with equal area:
either prove that it is always possible, or give a counterexample with justification.

4. An ellipse with foci F1, F2 and string length ` is the locus of all points X satisfying
|F1X|+ |XF2| = `. A hyperbola with foci F1, F2 and “imaginary string length” ` is the locus
of all points X satisfying |F1X| − |XF2| = ±`.
In Page 20 # 2, we showed that every segment of a billiard trajectory in an ellipse that does
not pass through the focal segment F1F2 is tangent to a confocal ellipse. Show that every
segment of a billiard trajectory in an ellipse that does pass through the focal segment F1F2

is tangent to a confocal hyperbola.
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1. We showed that every triangle is dissection equivalent to a parallelogram in Page
# , that every parallelogram is dissection equivalent to a rectangle in Page # ,
and that every rectangle is dissection equivalent to a square in Page # . Using this
strategy, cut up an equilateral triangle into pieces and reassemble them into a square of the
same area. Bring your pieces in to class. Can you find a dissection using fewer pieces?

2. An automorphism of a polygon surface must take vertices to vertices. In order for the
shear [ 1 M0 1 ] to be an automorphism of a particular surface, what must the relationship be
between M and the moduli m1,m2 . . .mk of its horizontal cylinders c1, c2, . . . , ck? How many
times does this shear twist each cylinder?

3. The figure shows a copy of the lower-left picture
of Page 20 # 1.

(a) Some trajectories in the cylinder direction have
cutting sequence DCEC. Sketch one of them. Then
describe the set of all such trajectories.

(b) Do the same for the other cutting sequence cor-
responding to a trajectory in the cylinder direction.

4. Given a tiling billiards trajectory on an obtuse triangle tiling (such as your folded
triangles from Page 21 # 3), show that, if the tiling is folded along each edge that the
trajectory crosses, all of the triangles that the trajectory crosses are inscribed in the same
circumcircle in their folded state. Is the same true on non-obtuse triangle tiling?

5. One way to pose the illumination problem is: “Is every region
illuminable from some point in the region?” R and L Penrose
constructed a counterexample, a region that cannot be illuminated
from any point inside, shown to the right. The top and bottom
are half-ellipses (the thick curves), with foci F1, F2 and G1, G2

respectively. Explain why this example works, by explaining which
part of the region is illuminated when the light source is placed:

(a) in the interior of a half-ellipse,

(b) in the middle section of the region, and

(c) in one of the lobes.

Roger Penrose is best known for creating the Penrose tiling, a set of two tiles, a “kite” and
a “dart,” that only tile the plane aperiodically.

6. Configuration spaces. Towns A and B are
connected by two roads. Suppose that two cars,
connected by a rope of length 2r, can go from A
to B without breaking the rope. Prove that two circular wagons of radius r moving along
these roads in opposite directions will necessarily collide. Do this by parameterizing the two
roads and constructing the configuration space shown above.
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1. Theorem (Modulus Miracle). Every horizontal cylinder of a double regular n-gon
surface has modulus 2 cotπ/n.

(a) Compute this number for n = 3, 4, 6, 8 and whichever n you used in Page 23 # 2c, and
check that it agrees with your previous calculations of the moduli.

(b) Explain why
[
1 2 cotπ/n
0 1

]
is an automorphism of the double regular n-gon surface.

(c) In Page 8 # 4, we said that there are three types of automorphisms of the square torus:
reflections, rotations, and shears. The same is true for all double regular n-gon surfaces. For
a general n, what are the reflection and rotation automorphisms of the surface?

2. In the triangle tiling that you folded up in Page 21 # 3, there are “right-side-up
triangles” Ri (shade these in), and “upside-down triangles” Ui (leave these white). You have
shown that, in their folded state, all of the triangles end up inscribed in the same circle.

(a) Show that, in their folded state, all of the Ri are rotations of each other.

(b) Suppose that a trajectory passes from some right-side-up triangle R1, to an upside-down
triangle U1, to another right-side-up triangle R2. By what angle do you rotate R1 to get R2?

3. Show that a given surface has a shearing automorphism in a given direction only if the
moduli of its cylinders in that direction are rationally related.

4. The art gallery problem. Suppose you have an art gallery with priceless masterpieces on
all of the walls, so you must ensure that each wall is in the view of a security guard. You
wish to employ the smallest possible number of security guards to accomplish this goal.

(a) For the Mission Park shape below, show that 8 guards are sufficient. Can you do better?

(b) Explain how this art gallery problem is different from the illumination problem.

5. Do each of the following, by actually cutting up paper, and bring your pieces in to class:

(a) Cut up and reassemble a 6× 1 rectangle into a square.

(b) Cut up and reassemble a 30◦-60◦-90◦ triangle into a 3-4-5 triangle.

What is the smallest number of pieces you can use in each case?

September 2016 25 Diana Davis



Math 424: Billiards, Surfaces and Geometry

1. The picture shows the image of the
double pentagon surface under the shear[
1 2 cotπ/5
0 1

]
.

(a) Show how to to reassemble (by transla-
tion, and respecting the edge identifications)
the pieces back into the double pentagon.

(b) Explain why the even-numbered pieces
end up in one pentagon and the odd-numbered pieces in the other.

(c) By comparing the widths (or heights) of its two cylinders, show that the double pentagon
surface is a cut, reassembled, and horizontally stretched version of the Golden L.

2. Our original motivation for studying the square torus was that it was the unfolding of
the square billiard table. In fact, we can view all regular polygon surfaces as unfoldings of
triangular billiard tables. We unfold the (π/2, π/8, 3π/8) triangular billiard table until every
edge is paired with a parallel, oppositely-oriented partner edge:

This gives us the regular octagon surface! So the regular octagon surface is the unfolding of
the (π/2, π/8, 3π/8) triangle.

(a) What triangle unfolds to the double regular pentagon surface? Make a guess, then draw
the unfolding as above.

(b) Draw the “shooting into the corner” period-6 trajectory in the triangular billiard table
on the left above. Then unfold it to a periodic trajectory on the regular octagon surface.

3. In this problem, we will give an upper
bound on the number of guards required to
guard the priceless artwork on the walls of an
art gallery shaped like an n-sided polygon.

(a) Explain why a guard at the corner of a
triangle can see the entire triangle.

(b) By triangulating your polygon and
coloring each of the three vertices of each triangle a different color, prove that an upper
bound for the number of guards required is bn/3c.
(c) Find the minimum number of guards for each polygon in the figure above.

September 2016 26 Diana Davis



Math 424: Billiards, Surfaces and Geometry

1. Show that, given a linear trajectory on the double regular n-gon surface, we can apply
rotations and reflections so that it is traveling left to right in a direction θ with 0 ≤ θ ≤ π/n.

2. When we sheared, cut and reassembled the square torus, we gave a rule for the effect
of this action on a cutting sequence corresponding to a trajectory on the surface: Given
a trajectory τ on the square torus with slope greater than 1, and its corresponding cutting
sequence c(τ), let τ ′ be result of applying [ 1 0

−1 1 ] to τ . To obtain c(τ ′) from c(τ), shorten each
string of As by 1. We can do the same for the double pentagon, octagon, and other regular
polygon surfaces:

Theorem. Given a trajectory τ on the double regular n-gon surface for n odd, or on the
regular n-gon surface for n even, where the direction of τ is between 0 and π/n, and its
corresponding cutting sequence is c(τ), let τ ′ be result of applying

[ −1 2 cotπ/n
0 1

]
to τ . To

obtain c(τ ′) from c(τ), keep only the sandwiched letters. (A sandwiched letter is one where
the same letter both precedes and follows it.)

John Smillie and Corinna Ulcigrai proved the even case in 2011, and DD proved the odd
case in 2013. It also holds for double regular n-gons for n even.

In the figure for Page 20 # 1, for the one in the lower right corner, you found cutting
sequences c(τ1) = BECE and c(τ2) = ABECDCEB corresponding to the two trajectories
in the cylinder direction.

(a) Apply the Theorem above to each of these cutting sequences to find c(τ ′1) and c(τ ′2).

(b) τ1 and τ2 are parallel, so τ ′1 and τ ′2 should be parallel as well. Explain. Then find the
cylinder decomposition of the double pentagon in the direction parallel to τ ′1 and τ ′2.

3. (Continuation) One rule is “shorten each string of As by 1,” and the other is “keep only
the sandwiched letters.” For a cutting sequence on the square torus, are these equivalent?
If not, can you reconcile them?

4. The defect of a vertex is 2π minus the sum of all the angles at the vertex. The total
defect of a polyhedron is the sum of the defects of all of its vertices. Find the total defect of
the cube, the dodecahedron, the square torus, and the double pentagon surface.

5. Prove that, for a tiling billiards trajectory
on an edge-to-edge right triangle tiling with parallel
diagonals:

(a) If the trajectory never intersects the two legs of
a triangle in a row, then it escapes. (Escapes means
that it eventually leaves any ball of finite radius, or
in other words that it is unbounded.)

(b) If a trajectory hits a hypotenuse at its midpoint,
then it hits the midpoint of every hypotenuse it
intersects.
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1. The Gauss-Bonnet Theorem says that the total (Gaussian) curvature K of a closed

surface S is

∫
∂S

K dA = 2π χ(S), where χ(S) is the Euler characteristic.

(a) Compute each side of this equation for the unit sphere S.

(b) Descartes’ special case of the Gauss-Bonnet Theorem says that the total defect of a
polyhedron is 2π χ(S). Check this formula for each of the four “polyhedra” in Page 27 # 4.

2. Geometrically, the matrix
[ −1 2 cotπ/5

0 1

]
=
[
1 2 cotπ/5
0 1

]
[ −1 0

0 1 ] is a horizontal flip followed

by a horizontal shear. The picture shows how the trajectory BECE is flipped, sheared and
reassembled into the trajectoryBC. Draw the same picture for the trajectory ABECDCEB,
to check the rule “keep only the sandwiched letters.”

3. You might wonder why we use
[ −1 2 cotπ/n

0 1

]
instead of

[
1 2 cotπ/n
0 1

]
. It is because its effect

is simpler to describe: The matrix
[ −1 2 cotπ/n

0 1

]
induces the effect “keep only sandwiched

letters” on the associated cutting sequence, while the matrix
[
1 2 cotπ/n
0 1

]
induces the effect

“keep only sandwiched letters, and also permute the edge labels.” What is this permutation?

4. For some time regular polygon surfaces (discovered
by William Veech) and square-tiled surfaces (such as the
eierlegende Wollmilchsau) were the only known examples of
surfaces that have all of the symmetries we listed for the
square torus: rotation, reflection, and the shear. Then Veech’s
student, Clayton Ward, discovered a larger family of such
surfaces, now known as Ward surfaces. One way to describe a
Ward surface is as a regular 2n-gon with two regular n-gons,
where alternating edges of the 2n-gon are glued to one of the n-gons, and the remaining
edges of the 2n-gon are glued to the other n-gon.

For n = 4, the Ward surface is an octagon and two squares, with edges identified as shown.
Decompose this surface into horizontal cylinders, and find the modulus of each. Simplify
your answers to a form where you can compare them. Are they rationally related?

5. Prove that every edge-to-edge right triangle tiling with parallel diagonals has an escaping
tiling billiards trajectory.
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1. The other way to describe a Ward surface is as the unfolding
of the (π/n, π/2n, π− π/n− π/2n) triangle. The picture shows the
unfolding of this triangle for n = 4 into a surface. Show how to
cut it up and reassemble this surface into the “octagon with two
squares” presentation. In what sense are these “the same surface”?

2. Up to symmetry, a triangle can be uniquely specified by its three angles α, β, γ. There
are two restrictions on the angles: α + β + γ = π and α, β, γ > 0. So we can represent
the space of all possible triangles (up to similarity) by the triangular part of the plane
x+ y + z = π that lies in the first octant, as shown. In this picture, each point of the space
represents a triangle. So the space of triangles is itself a triangle! It’s easier to see the picture
if we lay the triangle flat, as in the middle picture.

Make a large version of the middle picture in your notebook. Then sketch the following sets:
the set of all right triangles (dashed), the set of all isosceles triangles (solid), all triangles
with angles 0.12π, 0.35π, 0.53π (black dots), the set of all acute triangles (shaded).

3. (Continuation) In this representation of the space of all triangles, the angles are marked
− we keep track of which angle is α and which is β, so the (0.12π, 0.35π, 0.53π) triangle
is different from the (0.35π, 0.53π, 0.12π) triangle. This is somewhat redundant, so we can
instead represent the space of triangles with unmarked angles. This takes advantage of the
symmetries of the space of triangles to “fold up” the space so that each triangle is only
represented once (the right part of the figure).

(a) Sketch all of the sets from problem 2 on a folded picture in your notebook.

(b) The triangles with the most symmetry form the edges of the space, and form the lines
of symmetry that we fold on. Explain.

(c) As mentioned in problem 1, triangles with angles of π/n and π/2n unfold to Ward
surfaces. Sketch the set of these Ward triangles in red on your picture.

(d) Similarly, right triangles with a vertex angle of π/n unfold to regular polygon surfaces.
Sketch the set of these triangles in blue on your picture as well.

(e) Show that these sets are discrete in the space of triangles: for each point of the set, it
is possible to find an open set containing that point, that does not contain any other point
of the set.
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We glued up opposite parallel edges of a square to create a torus, and then we showed that
gluing opposite parallel edges of any parallelogram creates a torus. If we glue up the edges of
two different parallelograms, we get the “same” surface (in each case, a torus with genus 1),
but in some important way they are “different” surfaces: one may be thin, like a necklace,
while one is fat, like a donut. We can make this difference precise:

Two parallelograms are equivalent if there is an orientation-preserving similarity (rotation,
dilation, translation, or compositions of these) that transforms one into the other.

We only want one representative of each parallelogram, so we
will choose one in each equivalent group as follows: Given a
parallelogram with two edges e1, e2 meeting counter-clockwise
at v, we can translate it so that v is at the origin, we can rotate
it so that e1 is along the positive x-axis and the parallelogram
lies above the x-axis, and we can dilate it so that e1 has unit length, as shown. The marked
point is the point in the upper halfplane that represents the parallelogram.

The other endpoint of e2 lies somewhere in the upper halfplane, and this point uniquely
determines the parallelogram. We can represent the space of parallelograms as the upper
halfplane. With this representation, each point in the upper halfplane corresponds to a
parallelogram, just as every point in the space of triangles corresponds to a triangle.

1. Identify the point(s) in the upper halfplane that correspond(s) to: a square torus; a
parallelogram with side lengths 2 and 3 and an angle of π/4; rhombuses; the images of the
square torus under the shear [ 1 t

0 1 ] for all real numbers t. (When the analogous shearing
action is considered on more complicated kinds of translation surfaces, the result, which is
called the horocycle flow, is an active area of research.)

If we call a parallelogram with opposite parallel edges identified a parallelogram torus, then
Teichmüller space T1 is the space of all parallelogram tori (up to equivalence). We can
represent T1 as the upper halfplane.

2. It is also possible to define Teichmüller space Tg for surfaces of any genus g. It is trickier
in higher genus, because there is no easy way to select a representative for each equivalent
surface as we did for the parallelograms.

(a) Our favorite surfaces of genus 2 are the octagon and the double pentagon. Draw a
“movie” of continuously deforming one into the other, while keeping identified edges parallel.

(b) We draw the double pentagon with a shared middle edge. Contract this edge, like tight-
ening a girdle around its waist, in such a way that identified edges stay parallel throughout
the whole continuous process. What genus surface do you get when the edge is length 0?

The set of Veech surfaces is discrete in Teichmüller space, which makes them hard to find.

3. (Continuation of Page 28 # 2) Another way to draw the space of all possible triangles is
to take a line segment and break it into three pieces, and form a triangle out of the pieces.

(a) Draw the space of triangles under this method. Hint : This takes some thought.

(b) Shade in the region corresponding to acute triangles.
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(This page is from Tabachnikov, Geometry and Billiards, Example 1.2.) One reason to
study billiards is because they model certain systems from classical mechanics. Consider the
mechanical system consisting of two point masses m1 and m2 on the positive half-line x ≥ 0.
The collision between the points is elastic: that is, the energy and momentum are conserved.
The reflection of m1 off the left endpoint of the half-line is also elastic: if the point hits the
“wall” x = 0, its velocity changes sign. Let the coordinates of the points be x1 and x2.

1. Explain why and how the configuration space of the system can be described by the
infinite sector 0 ≤ x1 ≤ x2 with angle π/4.

2. Let v1 and v2 be the speeds of the point masses. As long as the points do not collide, the
phase point (x1, x2) in configuration space moves with constant velocity [v1, v2]. Consider the
instant of collision of the point masses, and let u1, u2 be the speeds after the collision.
Use your knowledge of physics to justify each of the following equations: (If you need to
review this, look up momentum and kinetic energy.)

m1v1 +m2v2 = m1u1 +m2u2,
m1v1

2

2
+
m2v2

2

2
=
m1u1

2

2
+
m2u2

2

2
. (1)

3. Now we introduce new variables to simplify the calculations: Let xi =
√
mixi, i = 1, 2.

(a) In these variables, explain why the configuration space is the sector whose lower bound-
ary is x1/

√
m1 = x2/

√
m2.

(b) Show that the angle measure of this sector is arctan
√
m1/m2.

4. In the new coordinate system, the speeds rescale the same way as the coordinates:
vi =

√
mivi, i = 1, 2. Rewrite the two equations (1) in these variables, to show that:

(a) the dot product of the velocity vector with the vector [
√
m1,
√
m2] is preserved, and

(b) the magnitude of the velocity vector does not change in the collision.

5. Justify and explain each of the following statements:

(a) The vector [
√
m1,
√
m2] is tangent to the boundary line x1/

√
m1 = x2/

√
m2 of the

configuration space, so the tangential component of the velocity vector does not change.

(b) When the two point masses collide, it corresponds to the configuration trajectory bounc-
ing off of the boundary of the configuration space, according to the billiard reflection law.

6. Show that a collision of the left point mass with the wall x = 0 corresponds to the
configuration trajectory bouncing off of the vertical boundary of the configuration space.

7. Summarize what we have shown here: “The configurations of
correspond to billiards in a .”

8. Show that, for a system of two point masses on the half-line, the maximum possible

number of collisions is

⌈
π

arctan
√
m1/m2

⌉
.

September 2016 31 Diana Davis



Math 424: Billiards, Surfaces and Geometry

Rainbows (billiards in a raindrop). This page is adapted from Tabachnikov, Geometry and
Billiards, Digression 5.2, and from Phillips Exeter Academy Math 4-5, Page 57 # 1-2.

The diagram shows a ray of sunlight entering a
raindrop. The change of direction at the air-water
interface is governed by Snell’s Law of Refraction (1)
sinα = k sin β, where k is the refraction coefficient,
with k ≈ 4/3 for air/water. Angles α and β are
measured with respect to a line perpendicular to the
surface of the drop, which passes through its center.
The dashed line is parallel to the incoming ray.

1. Show that when α = 0.8, we have β = 0.5681
(radians). Then show that when α = 0.8, we have
ψ = 0.6723, and that (2) ψ = 4β − 2α in general.

2. First, use Snell’s Law (1) to express ψ as a function of α. As α increases from 0
to π/2, the angle ψ increases from 0 to a maximum value, and then decreases. Find this
maximum value of ψ. This angle, which should be about 42◦ for k = 4/3, determines
where a rainbow appears in the sky after a late-afternoon thunderstorm.

The next problems use a different calculus method to find the angle of the rainbow, by
finding ψ in terms of the general refraction coefficient k, without reference to α or β.

3. A rainbow occurs at a maximum value of ψ, which occurs when
dψ

dα
= 0. (See G&B, pp.

80-81 for why this is.) Use this, and differentiate equation (2), to show that (3)
dβ

dα
= 1

2
.

4. Differentiate Snell’s Law (1), and combine it with equation (3) to obtain (4) 2 cosα =

k cos β. Combine this with (1) to eliminate β, and show that (5) cosα =

√
k2 − 1

3
. Hint :

This requires several lines of algebra. Don’t give up.

5. Use (4) and (5) to find β in terms of k, and then plug in to (2) to get ψ in terms of k.

6. The refractive index k depends on the color of the incident light. The index k = 4/3
actually belongs to yellow light. The indices that belong to the extreme colors of the visual
spectrum are k = 1.331 for red and 1.345 for violet. For each, find the corresponding value
of ψ. Then show that the “apparent width” of a rainbow is about 2 degrees.

7. It so happens that if you close one eye and hold an aspirin tablet, whose diameter is
0.7cm, at arm’s length, which is approximately 80cm from your eye, the tablet just barely
covers the sun. Find the apparent size of the sun, which is the size of the angle subtended
by the sun. Which is wider, the sun or a rainbow?

8. When you are looking directly at a rainbow, where is the sun in relation to you?
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5. Let L be the line with slope the golden ratio ϕ =
1 +
√

5
2

. Show that ϕ is an eigenvalue

of the linear transformation A = [ −1 1
1 0 ], and explain why L is invariant under A.

3. Does there exist a smooth domain D in the plane without a 2-periodic billiard trajectory?

n. For each integer n ≥ 3, there is a Ward surface, consisting of a regular 2n-gon and two
regular n-gons, or equivalently the unfolding of the (π/n, π/2n, π − π/n− π/2n) triangle
into a kind of “sunburst” figure. Draw the n = 3 Ward surface, whichever presentation you
choose. Label the edge identifications.

n. Let’s define the regular 2n-gon surface to be the surface made by identifying opposite
parallel edges of a regular 2n-gon. We assume that the 2n-gon has a pair of horizontal
edges, and that all edges have unit length.

Modulus Miracle, single even polygon case. Let n be even. Every horizontal cylinder of a
regular n-gon surface has modulus 2 cotπ/n, except a central rectangular cylinder if there is
one, which has modulus cot π/n.

(a) This tells us that we can shear a regular n-gon surface, for n even, using the matrix[
1 2 cotπ/n
0 1

]
and cut and reassemble the pieces. Calculate 2 cot π/n for the regular octagon

surface, and check with your earlier calculation.

(b) The proof of this result (and the next) requires tedious arithmetic, so we will not
undertake it. Instead, draw the regular decagon surface and shade its horizontal cylinder
decomposition. Translate copies of each piece, so that each cylinder is shown as a full
parallelogram. Does the statement above appear to be true for this example?

n. A rational polygon is a polygon whose angles are all rational multiples of π.

Explain why, for a billiard table that is a rational polygon, the unfolding requires a finite
number of copies of the table in order to end up with pairs of oppositely-oriented parallel
copies of the same edge.

n. (Continuation) Show that every rational polygon billiard table has a periodic billiard
path. You may assume the previous result, even if you were not able to prove it.

n. In 2006, Irene Bouw and Martin Möller discovered a larger family of lattice surfaces,
now called Bouw-Möller surfaces in their honor. The regular polygon surfaces and the Ward
surfaces are special cases of Bouw-Möller surfaces. Bouw and Möller gave an algebraic
description of the surfaces, and later, Pat Hooper found a polygon decomposition for the
surfaces, which we present here. I (DD) studied Bouw-Möller surfaces for my Ph.D. thesis,
after studying the double pentagon.

For any m ≥ 2, and any n ≥ 3, the (m,n) Bouw-Möller surface is created by identifying
opposite parallel edges of m semi-regular 2n-gons. A semi-regular polygon is an equiangular
polygon with an even number of sides. Edge lengths alternate between two different values,
which may be equal and may be 0. Their edge lengths are carefully chosen so that the cylin-
ders all have the same modulus. In lieu of giving the precise dBouw-Möller surfaceefinition
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here, we give some examples.

(a) The m = 2, n = 5 Bouw-Möller surface is the double pentagon.

(b) The m = 3, n = 4 Bouw-Möller surface is the octagon with two squares, studied earlier
problem.

(c) The m = 6, n = 5 Bouw-Möller surface is shown below.
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For the surface shown above, shade each horizontal cylinder a different color. Does it seem
plausible that all of the cylinders have the same modulus?
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n. Find the maximum possible number of collisions of two point-masses m1 and m2 on the
half-line.

n. Interpret the system of two point masses on a line segment, subject to elastic collisions
with each other and with the endpoints of the segment, as a billiard on a right triangle.

n. Consider a problem on Benford’s law.

n. (Continuation) We will show that the cutting sequence w = . . . 0100101001001 . . .
corresponding to L is invariant under the substitution

σ : 0→ 01, 1→ 0.

(a) Apply σ to the part of the cutting sequence w listed above. Does it seems reasonable
that the sequence is invariant under σ?

(b) Let wn = σn(0). (This means that you repeatedly apply the substitution rule above,
starting with the string 0.) Prove that the lengths of wn are the Fibonacci numbers.

(c) The map A transforms the
square grid into a grid of paral-
lelograms. Let w′ be the cutting
sequence of L with respect to the
new grid. Since A takes one grid
to the other, we have w′ = w. On the other hand, it follows from the figure that each 0 in
w corresponds to 01 in w′, and each 1 in w corresponds to 0 in w′. Explain. add arrows

n. Showing that Sturmian sequences are the non-periodic sequences with lowest possible
complexity.
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n. Prove that a billiard trajectory through the foci of an ellipse converges to its major axis.

n. A hyperbola is defined . . .

n. Tokarsky’s example. In the early
1950s, Ernst Straus asked, “Is every region
illuminable from every point in the region?”
G.W. Tokarsky gave several counterexam-
ples, polygons where there is some point in
the room, from which some other point is not
illuminated. One example is to the right. Use
unfolding to argue that point Q cannot be
illuminated from point P . The idea is that
blue vertices block paths from red to red.
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n.

n.

n.

n.

n.
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Reference: fill this in as you encounter new definitions.

term definition where it first appears

cutting sequence the bi-infinite sequence of edges intersected by a line page 1 # 1
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Reference (continued)

term definition where it first appears
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