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Multivariable Calculus

The problems in this text

This set of problems is based on the curriculum at Phillips Exeter Academy, a private
high school in Exeter, NH. Many of the problems and figures are taken directly from the
Mathematics 5 book, written by Rick Parris and other members of the PEA Mathematics
Department. A few of the problems are adapted from Calculus, by Jon Rogawski and Colin
Adams, and Vector Calculus by Susan Colley. The rest were written by me – Diana Davis.
These problem sources are labeled in the margin as PEA, R-A, SC or DD, respectively.
Anyone is welcome to use this text, and these problems, so long as you do not sell the result
for profit. If you use these problems, please give appropriate attribution, as I am doing here.

About the course

This course meets twice a week for 50 minutes for a total of 41 classes, for which the homework
is the numbered pages, usually with several pages (a and b, and possibly c) per class.

To the Student

Contents: As you work through this book, you will discover that the various topics of
multivariable calculus have been integrated into a mathematical whole. There is no Chapter
5, nor is there a section on the gradient. The curriculum is problem-centered, rather than
topic-centered. Techniques and theorems will become apparent as you work through the
problems, and you will need to keep appropriate notes for your records — there are no boxes
containing important theorems.

Your homework: Each page number of this book contains the homework assignment for one
night. The first day of class, we will work on the problems on page 1, and your homework
is page 2; on the second day of class, we will discuss the problems on page 2, and your
homework is page 3, and so on for the 41 class days of the semester. You are not required
to solve every problem before class, but you are required to think hard about every problem
and try to solve it, including writing it down and drawing a picture in your notebook. Plan
to devote at least two hours to solving problems for each class meeting.

Comments on problem-solving: You should approach each problem as an exploration.
Reading each question carefully is essential, especially since definitions, highlighted in italics,
are routinely inserted into the problem texts. It is important to make accurate diagrams
whenever appropriate. Useful strategies to keep in mind are: draw a picture, create an easier
problem, guess and check, work backwards, and recall a similar problem. It is important
that you work on each problem when assigned, since the questions you may have about a
problem will likely motivate class discussion the next day.

Problem-solving requires persistence as much as it requires ingenuity. When you get stuck,
or solve a problem incorrectly, back up and start over. Keep in mind that you’re probably
not the only one who is stuck, and that may even include your professor. You should bring to
class a written record of your efforts, not just a blank space in your notebook. The methods
that you use to solve a problem, the corrections that you make in your approach, the means
by which you test the validity of your solutions, and your ability to communicate ideas are
just as important as getting the correct answer.
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About this curriculum

We can roughly divide the topics of “multivariable calculus” into three categories: deriva-
tives, integrals, and calculus on vector fields. Most multivariable calculus courses are taught
in that order (left column below). One issue with this is that each topic is discussed, and
then left behind. The other is that calculus on vector fields, and its associated big theorems
− Green’s Theorem, Stokes’ Theorem and Gauss’s Theorem − are the most challenging
parts of the course, and they are left for the end (sometimes even for the very last day of
the course!), when the student doesn’t have much time to absorb them.

Instead, I have rearranged the topics (right column below), with the goal of studying the
ideas of vector calculus as early as possible, so that we have plenty of time to explore them.
A chart showing dependencies of the various topics is on the next page.

The big idea here is that we are developing derivatives, integrals, and calculus on vector
fields simultaneously, so that we have time to absorb each of them. By popular request, each
problem is labeled in the margin with its topic.
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Below is a map of the ideas in this course, and how they connect, from the basic ideas at the
bottom to the course goals at the top. An arrow goes from A to B if we need the ideas from
A in order to understand B. I made this chart when I was constructing our curriculum.

• Circle topics that you feel you understand well.

• Periodically come back to this chart and circle topics as you master them.
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Acknowledgements

Thank you to the instructors in the mathematics department at Phillips Exeter Academy
for developing this curriculum and writing so many of the problems. Special thanks to
department chair Gwyn Coogan for teaching me how to write my own curriculum, and for
sharing the source code with me.

Thank you to David Merola at the Solebury School for doing every problem in the book in
summer 2019, pointing out errors, and making helpful suggestions. Thank you to Brian Katz
for using this book for a course at Smith College in fall 2019 and doing the same, sending
errors and suggestions. The same thanks go to each of my students, in each of the semesters
I have used previous versions of these materials:

• Spring 2016 at Northwestern University

• Spring 2017 at Williams College

• Fall 2018 at Swarthmore College

• Spring 2019 at Swarthmore College

Online materials

In Spring 2018, I taught a course very similar to this one in a lecture format, and videotaped
my 40 lectures and posted them on YouTube. The topics go in the standard order, as listed
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Discussion Skills

1. Draw a picture

2. Ask questions

3. Connect to a similar problem

4. Speak to classmates, not to the instructor

5. Use other students’ names

6. Explain a difficult problem, even if your so-
lution may not be correct

7. Answer other students’ questions

8. Suggest an alternate solution method

9. Summarize the discussion of a problem

10. Contribute to the class every day
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First day - in class

1. A bug moves linearly with constant speed across my graph paper. I first notice the bugParEq / PEA

when it is at (3, 4). It reaches (9, 8) after two seconds and (15, 12) after four seconds. Draw
a clear, accurate diagram of this situation. Then predict the position of the bug after six
seconds; after nine seconds; after t seconds.

2. A vector field is a function F : R2 → R2. You can think of it as giving the wind speedVecFie / DD

and direction at each point on a windy field, or the water speed and direction at each point
in a turbulent stream. You input a point (x, y), and the output F(x, y) is a vector.

(a) On the axes below, sketch the vector fields F(x, y) = [x, y] and G(x, y) = [−y, x].
“Sketch the vector field F(x, y)” means “For lots of points (x, y) of your choice, draw the
vector F(x, y) with its tail at (x, y).” I have drawn the vectors F(0, 1) and G(0, 1) for you.

(b) Make sure that you sketched enough vectors to get a good idea of what is going on.
Then describe, in words, what the vector field F does, and what the vector field G does.

3. For a line in the familiar coordinate plane R2, you are familiar with the notion ofPlanes / DD

its slope. We would like to define an analogous measure for a plane in 3-space, R3. What
geometric information would you want this number to encode?
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1. The x- and y-coordinates of a point are given by the equations below. The position ofParEq / PEA

the point depends on the value assigned to t. Use graph paper to plot points corresponding
to the values t = −4,−3,−2,−1, 0, 1, 2, 3, and 4. Do you recognize any patterns? Describe
them. {

x = −2 + 2t

y = 10− t

2. (Continuation) The path of the bug in Page 1 # 1 intersects the line given by theParEq / PEA

equations above. At what point? First answer this question by making a careful sketch on
graph paper, and then find a way to solve it using a system of equations. You will have to
think carefully about t.

3. (Continuation) Another way to write an equation for the line above isParEq / PEA [
x
y

]
=

(
−2
10

)
+

[
2
−1

]
t.

(a) Explain. This is called a parametric equation, and t is called the parameter.

(b) What does the point ( −210 ) represent? What does the vector [ 2
−1 ] represent?

(c) Give two other parametric equations whose graph is this same line. Can you find one
that uses a starting point other than ( −210 )? One that uses a vector other than [ 2

−1 ]?

4. You know how to compute the dot product of two vectors, e.g. [a, b] • [c, d] = ac + bdVecFie / DD

. . . but what does it mean? We’ll give two answers, one now and one later.

Answer 1. The dot product measures how much two vectors point in the “same direction.”

Carefully sketch the vectors v1 = [5, 1],v2 = [−1, 5],v3 = [−3, 2], and another vector v4 of
your choice. Compute all of the pairwise dot products, and use your observations from this
data to fill in each blank below with one of the following characterizations:

are perpendicular point in similar directions point generally in opposite directions

• u • v > 0 when u and v .

• u • v = 0 when u and v .

• u • v < 0 when u and v .

Gra / DD 5. Find four different points (x, y, z) that satisfy
the equation x+ 2y + 3z = 6. Make a clear, accurate
diagram in your notebook of the x-, y- and z-axes, like
the one shown to the right, and plot the four points
on your sketch. What kind of object do you think
this equation represents?

PROBLEMS 6 AND 7 ON THE OTHER SIDE!
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DbInt / PEA 6. The diagram shows z = (1 − x2) sin y for
the rectangular domain defined by −1 ≤ x ≤ 1
and 0 ≤ y ≤ π. This surface and the plane z = 0
enclose a solid region R. It is possible to find the
volume of R by integration:

(a) Notice first that R can be sliced neatly into
sections by cutting planes that are perpendicular
to the y-axis — one for each value of y between 0
and π, inclusive. Explain why the area A(y) of the
slice determined by a specific value of y is given

by A(y) =

∫ x=1

x=−1
(1− x2) sin y dx. Then evaluate this integral, treating y as a constant.

(b) Explain why the integral

∫ y=π

y=0

A(y) dy gives the volume of R. Then evaluate it.

(c) Notice also that R can be sliced into sections by cutting planes that are perpendicular to
the x-axis — one for each value of x between −1 and 1. As in (a), use ordinary integration
to find the area B(x) of the slice determined by a specific value of x.

(d) Integrate B(x) to find the volume of R.

DD 7. A note on notation. Vector quantities, such as vector fields and vectors, are typeset
in bold, like F and v, and handwritten with an arrow above them, like

#»

F and #»v . When you
see F, you should write it as

#»

F . Copy down the following in proper handwritten notation:

(a) F (b) u (c) v1 (d) i, j,k

(e) Go back and fix your notation for problem 4, if your vectors vi do not have arrows!

Remember that when you come to class, you must have a written record in your notebook of
your thoughts about each of the problems, including:

• a picture,

• the relevant information given in the problem, and

• a full record of your solution, or all of your efforts towards one.
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1. Define the function f : R2 → R by f(x, y) = x2 + y2. ThisGra / DD

function takes in a point (x, y) from the plane, and outputs a
number f(x, y). To visualize this function, we can sketch the
associated surface z = x2 +y2. To figure out how to sketch the
surface, we can first intersect the surface with planes, to find
level curves and vertical sections.

(a) Level curves. Choose a horizontal level, such as
z = f(x, y) = 1, and plug it into the equation. This gives you
a curve in the xy-plane, in this case the curve 1 = x2 + y2,
shown to the right in green. Sketch this curve in your
notebook, and also the level curves corresponding to levels
2, 3, 4, 5, 6, 7, 8, 9, 10, 0, and −1, all on the same picture of the
xy-plane.

(b) Vertical sections. Now intersect the surface with vertical
planes, choosing a constant c and setting x = c for several
choices of c, including 0. Graph the resulting curves in the
yz-plane.

(c) Repeat (b) for the xz-plane, slicing with vertical planes of
the form y = c.

(d) Use the information from the slices to sketch a 3D picture
of the surface, which is called a paraboloid.

2. Find coordinates for two points that belong to the planePlanes / PEA

2x + 3y + 5z = 15, trying to choose points that no one else in
the class will think of. Show that the vector [2, 3, 5] is perpen-
dicular to the segment that joins your two points.

3. (Continuation) Now you know that [2, 3, 5] is perpendicularPlanes / PEA

to the plane. Explain how you know this.

4. To represent a vector field F on R2, one way to do it (asVF / DD

in Page 1 # 2) is to draw little arrows at many representative
points, to show the direction and magnitude of the vector field
at each point. Instead of doing that, this time we’ll sketch the flow lines, which show
trajectories of particles under the effect of the vector field, as though you drop a feather into
the flowing wind and see where it goes. The idea of the flow lines is that the vector field
arrows that we drew before are tangent vectors to the flow lines.

Draw the flow lines for the vector fields

(a) F = [x, y] and (b) G = [−y, x] and (c) H = [1, 2].

(d) Are the flow lines for G circles or spirals? How do you know?

Remember that F is handwritten as
#»

F , with an arrow above it.
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ParDer / DD

5. The picture to the right shows the sur-
face z = 5− x2/3− y2/3, along with the curves cut
through this surface by the vertical planes x = 1
(black) and y = 2 (red). The positive x-axis (left)
and y-axis (right) are pointing towards you out of the
surface. Label them now with x and y.

(a) What are the (x, y, z) coordinates of the blue
point of intersection of the two curves?

(b) Imagine that you are a hiker standing at the blue
point. If you walk due north, which is the direction of
the positive y-axis, will you be ascending or descend-
ing?

(c) If you walk due east, which is the direction of the
positive x-axis, will you be ascending or descending?
Will this eastward walk be steeper or less steep than
walking north?

(d) Explain how to use the level curves picture to the
right, to help you answer parts (b) and (c).

6. Multivariable calculus is about understanding three-dimensional objects. Anytime youGra / DD

are investigating a function, you should graph it. Consider z = 9− x2 − y2.

• Easiest way: Type the equation into Google. Try it now: z=9-x^2-y^2.

• Next-easiest: Type the same equation into WolframAlpha, a super powerful web site.

• If you are using a Mac, search for “Grapher” − it comes standard on the Mac, and
allows you to plot multiple graphs on the same axes, zoom and rotate. If you have
Grapher, use it to draw the surface; if not, see if your computer has another such
program.

• There are many free 3D graphing apps for a mobile device – download one of them
and draw the surface using it. Some even have augmented reality.

(a) Sketch a graph of the surface z = 9− x2 − y2 in your notebook.

(b) Which of the four graphing tools worked best for you? Be prepared to report to your
group which graphing tool is your favorite, and why.

Remember that when you come to class, you must have a written record in your notebook of
your thoughts about each of the problems, including a picture, the relevant information given
in the problem, and a full record of your solution, or all of your efforts towards one.
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1. We will figure out how to explicitly compute the two directional derivatives of theDirDer / DD

function f(x, y) = 5− x2/3− y2/3 at the point (1, 2) that we estimated in Page 3 # 5.

(a) Along the red curve, y = 2, the function is just a function of x: f(x, 2) = 5−x2/3−4/3.
Take the derivative of this function with respect to x, plug in x = 1, and thereby find the
slope of the hiker’s eastward walk from the blue point (1, 2, 10/3).

(b) The notation for this is:

fx(x, y)
∣∣∣
y=2

= ∂
∂x
f(x, y)

∣∣∣
y=2

= d
dx
f(x, 2) = d

dx
(5− x2/3− 4/3) = −2x/3.

fx(1, 2) = −2x/3
∣∣∣
x=1

= −2/3.

The vertical line indicates that we are evaluating the expression at a certain point or value.
The symbol ∂ is for a partial derivative, which we use for a function of more than one variable,
while the symbol d is for a total derivative of a function of only one variable. Justify each of
the equalities above, in words, and write your explanation in your notebook.

(c) Find fy(1, 2), which is the slope that the hiker would experience when walking north
from the blue point, along the black curve where x = 1.

2. (Continuation) Refer to the picture for Page 3 # 5.

(a) Explain why the vector [1, 0, fx(1, 2)] = [1, 0,−2/3] is in a direction tangent to the red
curve at the blue point.

(b) Give a vector that is in the direction tangent to the black curve at the blue point.

(c) Find a vector that is perpendicular to both [1, 0,−2/3] and the vector you found in (b).

DbInt / DD

3. Suppose that the base of your storage shed is the rectangle
0 ≤ x ≤ 4, 0 ≤ y ≤ 8, and its slanted roof is formed by the
plane z = x/4 + y/4 + 3, as shown. Explain why the following
integral gives the volume of the shed (a useful number to know,
if you wish to store things inside), and calculate the integral.∫ y=8

y=0

∫ x=4

x=0

(x/4 + y/4 + 3) dx dy

Can you express it as a triple integral?

4. A little fishie swims towards the water’s surface according to the parametric equationParEq / DD x(t)
y(t)
z(t)

 =

 t
1 + 2t
−14 + 4t

 .
A fishing net hangs in the water in the shape of the surface z = x2 + y2 − 20.

(a) Draw a picture of this situation.

(b) Does the fishie pass through the net? Where? When?
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5. (Continuation) An equivalent expression of the fishie’s path is r(t) = [t, 1 + 2t,−14 + 4t].ParEq / DD

Here t is measured in seconds, and distance is measured in centimeters (cm).

(a) How fast is the fishie moving (in cm/sec) in the x-direction? How fast is it moving in
the y-direction? How fast is it moving in the z-direction? What is the speed of the fishie?

(b) The velocity vector of the fishie’s path is r′(t) = [x′(t), y′(t), z′(t)]. Find this vector, and
explain what it means in the context of the fishie’s swim.

Gra / DD

6. The figure shows the surface z = f(x, y),
where f(x, y) = x2 − y2, and −1 ≤ x ≤ 1 and
−1 ≤ y ≤ 1. Fifty curves have been traced on
the surface, twenty-five in each of the coordinate
directions. This saddle-like surface is called a hy-
perbolic paraboloid, to distinguish it from the el-
liptical (or circular) paraboloids you have already
encountered. It has some unusual features.

(a) What do all fifty curves have in common?

(b) Confirm that the line through (1, 1, 0) and (−1,−1, 0) lies entirely on the surface.

Hint : write a parametric equation for this line, and plug it into the surface equation.

(c) In addition to the line given, there is another line through the origin that lies entirely
on the surface. Identify it.

(d) Explain the name “hyperbolic paraboloid.”

Gra / DD

7. How to draw a hyperbolic paraboloid in three easy steps. See picture below.

1. Draw an upward-facing parabola, and hang some downward-facing parabolas from it.

2. Hang more downward-facing parabolas, with the back part of each dashed or light.

3. (Optional) Sketch in some horizontal cross sections in different colors.

Draw a hyperbolic paraboloid in your notebook.

8. Make a sketch in the xy-plane of the level curves of the hyperbolic paraboloid. TheseLevCu / DD

correspond to the colored horizontal cross sections in the graph above. Use colors!

Experiment with different ways of drawing surfaces. Draw in enough features to show what is
going on, but not so many that the picture is confusing. This is an art that requires practice!
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1. People often say: “when you take a partial derivative with respect to x, you just treatParDer / DD

y as a constant,” and similarly, “when you take a partial derivative with respect to y, you
just treat x as a constant.”

(a) With this in mind, find the partial derivatives fx(x, y) and fy(x, y) of f(x, y) = x4y+y3.

(b) Notice that each partial derivative is actually a function of x and y, which takes different
values at different points. Find fx(3, 2) and fy(−1, 4) and explain what these numbers mean
geometrically. Remember to look at the surface z = x4y + y3 on a computer.

2. We have a guess, from Page 3 # 2–3, of how the equation of a plane relates to the vectorPlanes / PEA

perpendicular to it. With this in mind, write an equation for:

(a) a plane that is perpendicular to the plane 2x−y+3z = 6 and passes through the origin;

(b) the plane that is perpendicular to the vector [4, 7,−4] and goes through the point (2, 3, 5).

(c) Explain why part (a) says “a plane” and part (b) says “the plane.”

3. If you put a ball in a long sock and whirl it around above your head, the position ofParEq / DD

the ball at time t will be something like r(t) = [cos t, sin t, 2], where t is measured in seconds
and distance is measured in meters.

(a) Draw a picture of this situation.

(a) Velocity is the derivative of position: it measures how position is changing. Compute
the velocity vector r′(t), add it to your picture, and explain its meaning.

(b) Acceleration is the derivative of velocity: it measures how velocity is changing. Compute
the acceleration vector r′′(t), add it to your picture, and explain its meaning.

4. Suppose that you have just hiked Mount Davis (the highest point in Pennsylvania),ChRule / DD

and on your map (which is in the xy-plane), the path you took can be parameterized by[
x(t)
y(t)

]
=

[
2− 2t
1− t

]
, where t is measured in hours from t = 0 to t = 1, and distance is

measured in miles east and north from the summit. Further suppose that Mount Davis’s
surface can be modeled by the elevation function f(x, y) = 5− x2/3− y2/3.

(a) Explain the line segment and surface graphs below in this context.

(b) Explain why the elevation f is a function of x and y, while x and y are each functions
of t. Using the hiking story and the figures, explain why elevation f is a function of t.
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5. Page 2 # 6 illustrates how a problem can be solved using double integration. JustifyDbInt / PEA

the terminology (it does not mean that the problem was actually solved twice). Notice that
the example was made especially simple because the limits on the integrals were constant —
the limits on the integral used to find A(y) did not depend on y, nor did the limits on the
integral used to find B(x) depend on x. The method of using cross-sections to find volumes
can also be adapted to other situations:

(a) Sketch the region of the xy-plane defined by 0 ≤ x, 0 ≤ y, and x+ y ≤ 6.

(b) Sketch the 3D region R enclosed by the surface z = xy(6− x− y) and the plane z = 0
for 0 ≤ x, 0 ≤ y, and x+ y ≤ 6.

Remember to look at the surface z = xy(6− x− y) on a computer or other device.

(c) Find the volume of R.

FSV / DD

6. We can graph a function f(x) of one variable as a curve
in two dimensions, y = f(x). We can graph a function
f(x, y) of two variables as a surface in three dimensions,
z = f(x, y). It’s more difficult to graph a function f(x, y, z)
of three variables! One way to think about such a function is
that it gives the temperature at each point (x, y, z) in space.
A good way to visualize the function is to draw its level
surfaces, the surfaces of the form f(x, y, z) = c.

The temperature of a candle flame is about 1500◦F . The
temperature of a typical room is 70◦F . Sketch a couple of
representative level surfaces around the candle flame, which
are surfaces for which all points on the surface have the same
temperature, and label the temperature of each.

7. We will prove the Vector Law of Cosines, using the SSS version of the Law of CosinesVF / PEA

that you may remember from a geometry course:

For a triangle where the sides with lengths a and b come together to form angle C, and the

side opposite angle C has length c, we have cosC = a2 + b2 − c2
2ab

.

Draw vectors u and v tail-to-tail so that they make a θ-degree angle. Draw the vector
u− v, the third side of the triangle, and check to see that it points in the right direction.

(a) Solve for cos θ using the SSS version of the Law of Cosines, expressing all lengths in
terms of u,v and u− v.

(b) If you use vector algebra to simplify the numerator as much as possible, you will discover
the relationship between u • v and cos θ.

Hint : Use proper notation! |u| · |v| and u • v are different, and “uv” is meaningless.

8. To specify a direction, you can use a vector of any length. Give vectors of length 1, 5DirDer / DD

and 14 in: (a) the direction of vector [3,−4], (b) the direction of vector [−2, 3, 6].

A vector of length 1 is called a unit vector ; it is sometimes convenient to use these.
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1. The picture below is a topographic map of a small portion of western Massachusetts,ParDer / DD

near Williams College, containing Mount Greylock (the highest point in Massachusetts) and
the nearby mountain Stony Ledge. We could say that this map shows the level curves of the
elevation function f(x, y), which gives the elevation of a point (x, y), measured in feet. Level
curves are drawn in at multiples of 100 feet. You may wish to label more of the curves.

(a) For each blue point on the map, say whether fy is positive, negative or 0 at that point.
In other words, say whether you are ascending, descending, or neither as you walk in the
positive y-direction (north).

(b) For each red point on the map, do the same for fx.

2. Evaluate the double integrals: (a)

∫ x=3

x=1

∫ y=2

y=0

x3y dy dx (b)

∫ x=2

x=−1

∫ y=x+2

y=x2
1 dy dxDbInt / PEA

3. (Continuation) In part (a), you integrated to find the
volume under the surface z = x3y over a rectangular region of
the plane, as shown to the right. In part (b), you integrated to
find the volume under the surface z = 1 over a non-rectangular
region of integration. Sketch this region. Then explain why,
if you want to find the area of a region of the plane, you can
integrate the function f(x, y) = 1 over that region.

4. Find the rate of change of the function f(x, y) = 5− x2/3− y2/3, at the point (1, 2), inDirDer / DD

the direction of the vector [−3,−4], as follows:

(a) Parameterize a line [x(t), y(t)] through (1, 2) with direction [−3,−4] that moves at unit
speed. Then substitute in x(t) and y(t) for x and y in the function f(x, y) to get the function
f(t) as a function of t. Take the derivative of f(t) with respect to t, at t = 0.

(b) Explain why the work you did in (a) gives the rate of change of f in direction [−3,−4].

Later, we will find an easier way, using intuition from this problem.
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5. The cross product. Given two vectors u = [p, q, r] and v = [d, e, f ], there are infinitelyCrPr / PEA

many vectors [a, b, c] that are perpendicular to both u and v. It is a routine exercise in
algebra to find one, and it requires that you make a choice during the process. It so happens
that there is a “natural” way to make this choice, and an interesting formula results.

(a) Confirm that w = [ qf − re, rd− pf, pe− qd ] is perpendicular to both u and v.

(b) It is customary to call w the cross product of u and v, and to write w = u×v. There is
an easier way to remember the formula: if we allow ourselves to use i = [1, 0, 0], j = [0, 1, 0],
k = [0, 0, 1] as entries in a matrix (!!!), then the cross product is the matrix determinant

u× v = det

 i j k
p q r
d e f

 .
Use this to find a vector that is perpendicular to [2,−3, 6] and [−6, 2, 3].

(c) The direction of u× v is perpendicular to both u and v. It so happens that the length
of u× v is the area of the parallelogram spanned by the vectors u and v. Confirm this fact
for vectors u = [a, b, 0] and v = [c, d, 0] of your choice, using vectors that no one else in the
class will think of. Hint : Use integers a, b, c, d and draw your parallelogram on graph paper.

(d) Is it true that u× v = v × u?

(e) Give three explanations of why u× u = 0. Also explain why the zero is a vector.

Lin / DD 6. Let f(x, y) = −x2 − y2, and let L(x, y) = 2x− 4y + 5.

(a) Show that f(−1, 2) = L(−1, 2): the values of the
functions agree at (−1, 2).

(b) Show that fx(−1, 2) = Lx(−1, 2) and fy(−1, 2) = Ly(−1, 2):
the partial derivatives of the functions agree at (−1, 2).

(c) The function L(x, y) is called the linearization of f at
(−1, 2), or the best linear approximation of f at (−1, 2).
Explain the terminology. It may help to notice that the
graph of z = L(x, y), shown in pink, is the tangent plane
to the surface z = f(x, y), shown in blue, at the point
(−1, 2,−5), shown as a ball.
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For problems 1 and 2, let f(x, y) = x2y, and let x(s, t) = st and y(s, t) = est.

1. Solve for f as a function of s and t. Then find
∂f

∂s
and

∂f

∂t
.ChRule / DD

ChRule / DD

2. The Chain Rule from single-variable calculus says:

d
dx
f
(
g(x)

)
= f ′

(
g(x)

)
· g′(x).

We write this as
df

dx
=
df

dg
· dg
dx
, and draw a “dependence tree”

(left side of picture): f depends on g, which depends on x. In multivariable calculus, a
function f can depend on several variables (say, x and y), which themselves each depend on
several variables (say, s and t). The dependence tree for this example is on the right side of
the picture. In this case, the multivariable chain rule says:

∂f

∂s
=
∂f

∂x
∂x
∂s

+
∂f

∂y

∂y

∂s
(shown in thick lines) and

∂f

∂t
=
∂f

∂x
∂x
∂t

+
∂f

∂y

∂y

∂t
.

The idea is, to find
∂f

∂s
, you go down every “branch” of the “tree” that connects f to s.

Find
∂f

∂s
and

∂f

∂t
by solving for

∂f

∂x
, ∂x
∂s
, . . . − each of the four parts of the right sides of each

equation above − and substituting for x and y until your expression is entirely in terms of
s and t. Compare your answer with that of #1, and discuss which approach you prefer.

3. The USA women’s soccer team made penalty kicks in their quarterfinal match againstBall / DD

Sweden in the 2016 Olympics. Let’s assume that the line between the kicker and the goalie
is the x-axis, and that the y-coordinate measures height above the ground in feet. The kicker
kicks the ball at (0, 0) with an initial velocity vector of [40, 32], measured in feet per second.

(a) Make a sketch of this situation.

(b) There is no wind, so the only force acting on the ball is gravity, which has a force of
−32ft/sec2, so the ball’s acceleration vector is r′′(t) = [0,−32]. Integrate this to find r′(t).

(c) You should have a integration constant in your answer to (a). The initial velocity r′(0)
was given in the problem; use this to find the constants and give an expression for r′(t).

(d) Integrate r′(t), and use the initial position r(0) given in the problem to determine what
the integration constant should be, and thus give an expression for r(t).

(e) The goal is 75 feet from the kicker. Will the ball go into the goal?

Hint : In addition to calculations, you may also need to apply common sense.

4. Evaluate the double integral

∫ x=1

x=0

∫ y=1

y=x

cos
(
y2
)
dy dx without using a calculator. YouChOr / PEA

will need to describe the domain of the integration in the xy-plane in a way that is different
from the given description. This is called reversing the order of integration.
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5. Let P0 = (p, q, r) be a given point, n = [a, b, c] be a direction vector, and X = (x, y, z)Gra / PEA

be a point. Write an equation that says that the vector
−−→
P0X is perpendicular to n. Then

simplify your equation as much as possible, so that the variables x, y, z are on one side, and
the constants a, b, c are on the other side. Sketch an example P0 and n, and an example X.
What does the configuration of all such points X look like?

The gradient. We think about fx(a, b) as being “the rate of change of the function f(x, y)
in the positive x-direction at (a, b),” and similarly for fy(a, b). It turns out that the vector
whose entries are these two numbers has some meaning. We call this vector the gradient :

gradient of f = ∇f =

[
fx
fy

]
.

gradient of f evaluated at the point (a, b) = ∇f(a, b) =

[
fx(a, b)
fy(a, b)

]
.

6. Given a function f(x, y) and a point (a, b), consider the related functionLin / DD

L(x, y) = f(a, b) +∇f(a, b) •
[
x− a
y − b

]
.

(a) Find L(a, b). Then explain why the values of the two functions agree at (a, b).

Hint : to find L(a, b), plug in x = a and y = b and simplify.

(b) Find Lx(a, b) and Ly(a, b). Then explain why the first derivatives of the two functions
agree at (a, b).

(c) What is the relationship between the surface z = f(x, y) and the surface z = L(x, y)?

7. For a vector field F = [P,Q], its divergence div(F) is defined as ∂P
∂x

+
∂Q

∂y
. Compute thisDiv / DD

for our favorite vector fields (a) F = [x, y] and (b) G = [−y, x] and (c) H = [1, 2].
We can think of divergence as measuring the net amount of “stuff” emitted (if positive) or
absorbed (if negative) at each point of a vector field. With this in mind:

(d) Referring to your flow line pictures from Page 3 # 4, explain why the divergence values
for G and H are both 0.

(e) Sketch a vector field that has negative divergence. If you can, find an equation for your
vector field and check your answer algebraically.
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1. The numbers fx(a, b) and fy(a, b) give us rates of change of f at (a, b) in the positive x-DirDer / DD

and y-directions. What if we want to know the rate of change of f in some other direction?

(a) Suppose that you are at the point (a, b), headed in the direction of the vector u =

[
u1
u2

]
.

Explain why your position can be described by the equation

[
x(t)
y(t)

]
=

[
a+ u1t
b+ u2t

]
.

(b) Explain why each of the following equalities is true:

df

dt
=
∂f

∂x
dx
dt

+
∂f

∂y

dy

dt
= fx(a, b) u1 + fy(a, b) u2 = ∇f(a, b) •

[
u1
u2

]
.

(c) The symbol ∂ is for a partial derivative (when a function depends on more than one
variable), while the symbol d is for a total derivative (for a function of one variable.) Explain
why some of the derivatives in part (b) are ∂ and some are d.

(d) Explain why, if we want to use the equation in part (b) to answer the question “what is
the rate of change of f in the direction of the vector u?” we must use a unit vector for u.

2. For the function g(x) = x2 + sinx− ex, find g′(x), g′′(x), and g′′′(x).HOP / DD

For problems 3 and 4, use the function f(x, y) = x2y + 2x+ x sin y.

3. Find the partial derivatives of f with respect to x and y.HOP / DD

4. Just as you can take multiple derivatives g′(x), g′′(x), g′′′(x) of a function g(x) of oneHOP / DD

variable, you can take multiple partial derivatives of a function of several variables.

(a) For example, the second partial derivative fxx means “the partial derivative of fx with
respect to x.” For the function f(x, y), compute fxx and also fyy.

(b) You can also compute a mixed partial derivative fxy, which means “the partial derivative
of fx with respect to y.” For the function f(x, y), compute fxy and also fyx.

More problems on the next page.
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5. Verify that the point P = (2, 1, 3) is on the hyperboloid x2 + 4y2 + 1 = z2.Gra / DD

(a) Sketch cross sections of this surface for z = −
√

5,−
√

2, −1,0,1,
√

2,
√

5.

For example, we plug
in z = −

√
5 and get

x2+4y2+1 = 5 =⇒ x2+4y2 = 4.

This is an ellipse, which
contains the points (2, 0),
(−2, 0), (1, 0), (−1, 0),
so it has a width of 2
in the x-direction and
a width of 1 in the
y-direction. I have
drawn this ellipse in
the picture at a height
of z = −

√
5 ≈ −2.2.

Now you do the rest.

(b) After sketching in all of the cross-sections, describe what the surface looks like.

6. Verify that the point Q = (7, 2, 8) is on the hyperboloid x2 + 4y2 − 1 = z2.Gra / PEA

(a) Show that for this hyperboloid, every level curve z = k is an ellipse.

(b) Conclude that this hyperboloid is a connected surface, in contrast to the preceding
example, which had two separate parts. We call this one a one-sheeted hyperboloid, and the
preceding example is a two-sheeted hyperboloid. Make a sketch of the surface.

7. If [x(t), y(t)] is a parametric curve, then

[
dx
dt
,
dy

dt

]
is its velocity and

√(
dx
dt

)2
+

(
dy

dt

)2

SLI / PEA

is its speed. Find a parameterized curve whose speed is
√
t4 − 2t2 + 1 + 4t2.

8. The integral

∫ b

a

√(
dx
dt

)2
+

(
dy

dt

)2

dt is a template for what type of problem?© / PEA
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Planes / DD 1. Find an equation for the plane that contains the triangle
shown at right.

2. Sketch the plane given by the equation 6x+ 2y − 3z = 12.Planes / DD

SLI / PEA

3. The cycloid (x, y) = (t− sin t, 1− cos t) is the path followed by a point on the edge of a
wheel of unit radius that is rolling along the x-axis. The point begins its journey at the origin
(when t = 0) and returns to the x-axis at x = 2π (when t = 2π), after the wheel has made
one complete turn. What is the length of the cycloidal path that joins these x-intercepts?
This length is called the arclength.

4. Just as a tangent line to a curve gives a goodLin / DD

linear approximation to the curve near the point of
tangency, a tangent plane to a surface gives a good
linear approximation near the point of tangency. The
picture for Page 6 # 6 shows one example of a tangent
plane, and another is to the right.

(a) For a surface S given by z = f(x, y), and a point
P = (a, b, f(a, b)) on the surface, explain why the
vectors [1, 0, fx(a, b)] and [0, 1, fy(a, b)] give tangent
directions to S at P . Hint : Page 4 # 2

(b) Use these two tangent vectors to find a normal vector to S at P .

(c) Find an equation for the tangent plane at the point P = (1, 2, 10/3) to the familiar
surface z = 5− x2/3− y2/3 shown in Page 3 # 5.

(d) Find a way to check your answer, and do so.
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5. (Continuation of Page 2 # 4) What does the dot product mean?VF / DD

Answer 2. By Page 5 # 7, u • v = |u| · |v| · cos θ, where θ is the angle between u and v.

Informed by this knowledge, fill in the following statements with right/obtuse/acute:

• u • v > 0 when the angle between u and v is .

• u • v = 0 when the angle between u and v is .

• u • v < 0 when the angle between u and v is .

6. Fubini’s Theorem states thatDbInt / PEA ∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy

is true whenever f is a function that is continuous at all points in the rectangle a ≤ x ≤ b
and c ≤ y ≤ d. Despite the intuitive content of this statement, a proof is not easy, and this
will be left for a later course in real analysis. It suffices to do examples that illustrate its
non-trivial content.

(a) Sketch the region of integration for each integral above.

(b) Verify the conclusion of the theorem using f(x, y) = x sin(xy) and the rectangle 1 ≤ x ≤ 2
and 0 ≤ y ≤ π.

Hint : To compute the integral in the order dx dy, you will need to use integration by parts
multiple times. Don’t give up!
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1. Find the tangent plane to the surface z = x2y + 2x+ x sin y at the point (1, 0, 2).Lin / DD

2. For the following double integral, first sketch the region of integration, and then changeChOr / DD

the order of integration to dx dy. Hint : You will have to use two integrals!∫ x=1

x=0

∫ y=x

y=−x
f(x, y) dy dx

HOP / DD

3. You can compute a second partial derivative, but
what does it mean? Recall from single-variable cal-
culus that when f ′′(x) > 0, the function is concave
up, when f ′′(x) < 0, the function is concave down,
and when f ′′(x) = 0, the function is (at least instan-
taneously) flat. Second partial derivatives measure the same thing, but in the directions of
the x- and y-axes. fyy, for example, measures whether fy is increasing, decreasing or 0 as
you go in the positive y-direction.

In the picture, the red curve is a cross-
section of a surface z = f(x, y) in the x-
direction through the point (a, b), and the
blue curve is a cross-section of the same
surface in the y-direction through (a, b).
This information tells us that the surface
z = f(x, y) has a saddle / pringle shape at
(a, b, f(a, b)).

For the function f(x, y) = 5− x2/3− y2/3
shown in Page 3 # 5, look at the picture and
say whether fxx and fyy should be positive,
negative or 0 at (1, 2). Then compute them.

4. Suppose that you are on a landscape whose elevation can be modeled by the functionDirDer / DD

f(x, y) = exy − xy2, and you are standing at the point where (x, y) = (1, 2).

(a) Find the rate of change of your elevation if you were to walk north (positive y-direction),
or east (positive x-direction).

(b) Find the rate of change of your elevation if you were to walk south, or west.
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5. Suppose that you are building a fence from (5, 0)SLI / SC

to (0, 5), following the curve C that is the part of the
circle of radius 5 centered at the origin. The height
of the fence at the point (x, y) is f(x, y) = 10−x− y.
Draw a picture of this situation.

(a) Set up an integral to find the length of the fence.

(b) Set up, and evaluate, a single integral to find the
total area of the fence.

6. (Continuation) Fill in all the details for theSLI / DD

following equation, and explain why it holds:∫
C

f(x, y) ds =

∫ t=b

t=a

f(x(t)) · |x′(t)| dt.

This is called the scalar line integral of f along C.

On the left side, C is the curve; f(x, y) is the height of the fence at the point (x, y); and
ds is an infinitesimal piece of arclength along the curve. On the right side, t is the “time”
parameter for the curve in the xy-plane; x(t) is the location of the particle that traces out
the curve, at time t; |x′(t)| is the particle’s speed at time t, and dt is an infinitesimal amount
of time. When I ask you to “fill in all the details,” this means you need to explain all the
parts, like how C and (x, y) turned into a and b and #»x (t), and you need to make sense of it
in the context of the curve and the fence.

7. Given a function f that is differentiable, one can form the vector ∇f = [fx, fy] at eachGrad / PEA

point in the domain of f , to create a gradient vector field. Suppose that f(x, y) = x2 + 4y2.
Sketch the gradient vector ∇f(a, b) at each lattice point (a, b), as in the picture below.

Hint : You may wish to scale the lengths of all of your vectors down by some factor like 1/4
so that they fit nicely on your picture.
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1. Find the rate of change of the function f(x, y) = exy − xy2, at the point (1, 2), in theDirDer / DD

direction of the vector [5, 12]. Hint : Use Page 8 # 1.

2. (Continuation) The notation for the directional derivative of the function f , at the pointGrad / DD

(a, b), in the direction of the unit vector u, is Duf(a, b).

(a) Rewrite the question in problem 1, using this new notation.

(b) Explain why Duf(a, b) is a number, whose meaning is a rate of change.

(c) Justify each of the following equalities (recall Page 8 # 1b):

Duf(a, b) = ∇f(a, b) • u = |∇f(a, b)| · |u| · cos θ = |∇f(a, b)| cos θ.

Here • denotes the dot product, · denotes scalar multiplication, and θ is the angle between
the vectors ∇f(a, b) and u in the xy-plane.

(d) Suppose that you want to go in the direction of the
maximum rate of change − because f(x, y) describes your
elevation on a mountain, say, and you want to ascend as
quickly as possible. Which direction should your unit vec-
tor u point, in order to maximize the directional derivative
of f at (a, b) in the direction of u?

(e) With this in mind, explain the geometric meaning of
the direction vector ∇f(a, b).

3. Find all of the points on the surface z = 3x2 − 4y2 where the tangent plane is parallelLin / DD

to 3x+ 2y + 2z = 10.

4. Sketch the following surfaces:FSV / DD

(a) x2 + 4y2 − z2 = −1

(b) x2 + 4y2 − z2 = 0

(c) x2 + 4y2 − z2 = 1

(d) Explain why each of the surfaces you sketched is a level surface of the function

f(x, y, z) = x2 + 4y2 − z2

at a different level. What does the “movie” of all of the level surfaces look like?

5. The point P = (−5, 8) is in the second quadrant. You are used to describing it by usingPolar / PEA

the rectangular coordinates −5 and 8. It is also possible to accurately describe the location
of P by using a different pair of coordinates: its distance from the origin and an angle in
standard position (measured counter-clockwise from the positive x-axis). These numbers are
called polar coordinates. Calculate polar coordinates for P , and explain why there is more
than one correct answer.
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Interval notation: If a ≤ x ≤ b, we say that x is in the interval [a, b]. We use square
brackets for “≤” and round brackets for “<,” so for example if c < y < d, then y is in the
interval (c, d). The rectangle where a ≤ x < b and c ≤ y < d is denoted by [a, b)× [c, d).

6. An example where Fubini’s Theorem does not apply. Define f(x, y) on the “unit square”DbInt / DD

[0, 1]× [0, 1] as follows:

f(x, y) =



1 on [0, 1/2)× [0, 1/2)

−2 on [1/2, 3/4)× [0, 1/2)

4 on [1/2, 3/4)× [1/2, 3/4)

−8 on [3/4, 7/8)× [1/2, 3/4)
...

0 elsewhere.

(a) For every region in [0, 1]× [0, 1] shown below, mark the value of the function.

(b) Show that

∫ 1

0

∫ 1

0

f(x, y) dy dx = 1
4

while

∫ 1

0

∫ 1

0

f(x, y) dx dy = 0. Discuss.
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1. The direction of the cross product u× v is given by the right hand rule: Place vectorsCrProd / DD

u and v tail-to-tail. Flatten your right hand, and point your fingers in the direction of u.
Now curl your fingers in the direction of v (you may have to flip over your hand to do this).
Your thumb points in the direction of u× v. For each set of vectors u and v below, sketch
a vector in the direction of u × v. (In these pictures, the x- and z-axes are in the plane of
the page, and the y-axis extends away from you. Use your 3D imagination!)

2. (Continuation) The orientation of the x, y and z-axes are always given by the right handCrProd / DD

rule, so that
(x-direction)× (y-direction) = (z-direction).

Confirm this in the pictures above. Then draw pictures of the x, y and z-axes so that:

(a) z points up and y points to the right, (b) z points up and y points to the left,

(c) z points up and x points to the left, (d) z points down.

The 200 Swiss franc bill, showing an alternative method for the right hand rule.

3. For a vector field F = [P,Q,R], the curl of F, curl(F), is defined by the vectorCurl / DD

[Ry −Qz, Pz −Rx, Qx − Py] = det

 #»

i
#»

j
#»

k
∂/∂x ∂/∂y ∂/∂z
P Q R

 .

Compute the curl of each of the vector fields

(a) F = [x, y, 0] and (b) G = [−y, x, 0] and (c) H = [z, 0,−x].

(d) What information to you think the curl vector is intended to convey?
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4. Consider again f(x, y) = x2 + 4y2, whose vector field you sketched in Page 10 # 7.VF / DD

(a) In one color, draw flow lines for the gradient vector field ∇f , using representative flow
lines all over the picture.

(b) In a different color, add level curves to your picture, for at least 10 different levels.

(c) Explain why flow lines and level curves always intersect perpendicularly.

5. One reason to find the tangent plane to a surface at a point is that it gives a good linearLin / DD

approximation to the function near that point. Consider f(x, y) = x2y + 2x+ x sin y.

(a) Without a calculator, compute f(1, 0) (in radians).

(b) Without a calculator, try to compute f(1.1,−0.1). If you can’t do it, explain why not.

(c) In Page 10 # 1, we found a tangent plane to z = x2y+ 2x+x sin y at the point (1, 0, 2),
which is z = 2x+ 2y. Use this linear approximation to find a good estimate for f(1.1,−0.1).
Notice that you did this entire thing with a pencil and paper. Wow!

(d) Use your calculator to find f(1.1,−0.1). How close was your approximation?

6. A metal plate consists of the region bounded by the curves y = x and y = x2.DbInt / DD

(a) Sketch this region, in a LARGE, CLEAR diagram, and set up a double integral to
integrate a function f(x, y) over this region.

(b) The amount of electric charge at a point (x, y) of the plate is f(x, y) = 2xy coulombs
per square cm. Find the total amount of charge on the plate.

DbInt / DD

7. You have found the volume under a given surface
(such as x3y or x/4 + y/4 + 3) over a given region. But
what about the volume between two surfaces? For this,
you have to find the region of integration in the xy-plane,
and then set up the limits of integration.

(a) Consider the surfaces z = −(x2 − y)(y − x− 2)− x
and z = 4(x2 − y)(y − x− 2)− x, pieces of which are
shown to the right. Find the curves in the xy-plane that
are the shadows of the intersection curves of these sur-
faces. Sketch the curves in the xy-plane and shade the
region between them, which is our region of integration.

(b) Write a double integral to find the volume of the solid
that is enclosed between the surfaces, and then compute
its value (it is tedious, so you may use a calculator).

8. Clairaut’s Theorem says that, for a function f(x, y) with continuous first and second
derivatives, fxy = fyx. Make up a function f(x, y) that no one else will think of, and check
that the theorem holds for your example.
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Review for midterm 1, which is in the evening after this class.
The following optional review problems are provided for your convenience.

0. On the course topic map on page iii, circle the topics with which you are comfortable.

© / R-A

1. The methane molecule CH4 consists of a carbon molecule
bonded to four hydrogen molecules that are spaced as far apart
from each other as possible. The hydrogen atoms then sit
at the vertices of a tetrahedron, with the carbon atom at
its center, as shown. We can model this with the carbon
atom at the point (1/2, 1/2, 1/2) and the hydrogen atoms at
(0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1). Find the bond angle α
formed between any two of the line segments from the carbon
atom to the hydrogen atoms.

DbInt / DD

2. Set up a double integral, in both orders of integration, to
integrate a function f(x, y) over the shaded region R shown to
the right, which is made from the unit circle and the two lines
y = 1 and y = x− 1. Which order do you prefer?

ParEq / DD

3. The figure shows the graph of the curve r(t) = [cos t, sin t, 2 sin 2t].

(a) For which values of t, x and y do the maximum z-values occur?

(b) For which values of t, x and y do the minumum z-values occur?

(c) Use the previous parts to accurately sketch in the x, y, z-axes.

(d) Compute the velocity vector r′(t), and use it to find an equation
for the tangent line to the curve at t = π/4. Check that your solution
agrees with your sketch.

4. Find the area of the parallelogram spanned by the vectors [1, 2, 3] and [−1, 3,−6].© / DD

5. A mosquito flies at a constant speed according to the equation
[
x
y
z

]
=
[
4+t
1

1−t

]
. AParEq / DD

spiderweb, with a patient spider, hangs in the position of the plane 2x+ 3y + 5z = 15. Will
the mosquito get caught in the web, and if so, when and where?

6. Given the acceleration vectors #»p ′′(t) = [6t, cos t], the velocity vector #»p ′(0) = [1, 2], andBall / DD

the position vector #»p(0) = [−π3,−1], calculate the position vector #»p(π).

7. Write an equation for a plane that passes through the point (−1, 2,−3), whose normal
vector is [2, 3,−5].

8. Do the lines
[
3−2t
−1
1+t

]
and

[
1

1+t
−t

]
intersect? If so, where?

9. Make a list of problems, from any page 1–13 in this book, that you would like a classmate
or the professor to explain, and any other questions you would like to ask.
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Multivariable Calculus

Big picture overview.

We’ve already started exploring a lot of the ideas in multivariable calculus, listed below. In
italics are topics that we have started to explore a little bit, but not enough to test.

0. Setup: Lines, planes, curves, functions of several variables, level curves and surfaces,
cross product, quadric surfaces (paraboloids, hyperbolic paraboloids, hyperboloids)

1. Derivatives: Partial derivatives, tangent planes, chain rule, higher-order partial deriva-
tives, directional derivatives, the gradient

2. Integrals: Double integrals, changing order of integration

3. Calculus with vector fields: Parametric curves, dot product, vector fields, flow
lines, divergence, arclength, scalar line integrals

In single-variable calculus, you studied functions like f(x) = x2, of a single variable x. How
is the function value changing when you change x? Compute the slope f ′(x). How do we
get a good linear approximation of the function? Use the slope to find a tangent line, which
matches the function’s value and its derivative at the point of tangency. How do we find the
area under the curve, over some interval I of the real line? Integrate

∫
I f(x) dx.

Now in multivariable calculus, we have more dimensions, so we could have a curve in 3-
space, like r(t) = [t, t2, sin t]. Now to write an equation for a tangent line to this curve, we’d
need a tangent vector, and it will be a parametric equation. To determine the length of
the curve, say between time t = 1 and t = 3, we compute the arclength.

We can also have functions of several variables, such as the quadric surface f(x, y) =
5 + x2− y2. How do we know what the surface z = f(x, y) looks like? Sketch level curves.
What if we have a function f(x, y, z) of three variables? Sketch level surfaces.

How is the function value f(x, y) changing when you change x and y? Well, it depends how
much you’re changing x versus y − what direction you’re going. So to answer this question,
we have to use a directional derivative. How do we get a good linear approximation to
the surface z = f(x, y) at a point? We compute the tangent plane, which matches the
function’s value and both partial derivatives at the point of tangency. To write down the
equation for the tangent plane, we find a normal vector, using the cross product, and use
the components of the vector as the coefficients of x, y and z as we derived in Page 6 # 2.

How do we find the volume under a surface z = f(x, y), over some region R of the plane?
Compute the double integral

∫∫
R f(x, y) dx dy. What if that’s difficult or impossible?

Change the order of integration to dy dx, which requires sketching the region of inte-
gration R.

What if we have water or wind swirling around? We can describe this motion using a
vector field. One way to graphically represent a vector field is to draw vectors as arrows
at representative points in the plane, and another way is with flow lines. If we want to
measure how much two vectors point in the same direction, or find the angle between them,
we use the dot product.
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Multivariable Calculus

1. Let the symbol ∇ (“nabla”) denote the differential operator in each coordinate:

∇ =

[
∂
∂x
, ∂
∂y

]
or ∇ =

[
∂
∂x
, ∂
∂y
, ∂
∂z

]
, etc.

Using this notation, explain why, for a function f(x, y) and a vector field F(x, y), we have:

(a) gradient of f is ∇f (b) divergence of F is ∇ • F (c) curl of F is ∇× F

2. Let f be a function and let F and G be vector fields. Which of the following expressions· · · / DD

make mathematical sense? If you can compute any of them, do so.

(a) curl(div(F)) (b) curl(∇f) (c) div(F •G) (d) curl(div(f))

(e) div(curl(G)) (f) div(∇f) (g) curl(curl(F))

3. Suppose that f(x, y) = 5− x2 − y2/2 gives the elevation at the point (x, y) of a mountainDirDer / DD

upon which you are snowshoeing, and you are at the point (1, 2, 2).

(a) Which direction should you hike, if you
want to climb most steeply? Express this
direction as a unit vector, and also as an
angle γ from the positive x-axis.

(b) What is the directional derivative of el-
evation in that direction?

(c) Suppose you only want to climb half
as steeply as the slope in part (b) that is
given by hiking in the direction from part
(a). Such a route is shown in the picture.
Which direction should you go? Hint : Use
Page 11 # 2c. You may find it easiest to
express your answer as an angle γ.

4. Polar coordinates for a point P in the xy-plane consist of two numbers, r and θ, wherePolar / PEA

r is the distance from P to the origin O, and θ is the counter-clockwise angle between the
positive x-axis and the ray OP . Find polar coordinates for each of the following points:

(a) (0, 1) (b) (−1, 1) (c) (4,−3) (d) (1, 7) (e) (−1,−7)

5. Describe the configuration of all points whose polar coordinate r is 3. Describe thePolar / PEA

configuration of all points whose polar coordinate θ is 110.

6. Suppose that the flow of air in a very turbulent area is given by the vector field© / DD

[3x2z + y2 + x, 2xy − y, x3 + 4z]. You toss a plastic bag into this area and watch the wind
push it around. Is it rotating?

7. Calculate the scalar line integral of the function f(x, y) = 3y over the curve C consistingSLI / SC

of the portion of the graph of y = 2
√
x between (1, 2) and (9, 6).
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Multivariable Calculus

1. More polar coordinatesPolar / PEA

(a) Convert the polar pair (r, θ) = (8, 150◦) to an equivalent Cartesian pair (x, y).

(b) Given polar coordinates r and θ for a point, how do you calculate the Cartesian coordi-
nates x and y for the same point?

2. Figure out what the curve r = sin θ looks like, in two different ways:Polar / DD

(a) Fill in the following table, and then plot the points on the “polar graph paper” below
right. It has circles of radius 0.25, 0.5, 0.75 and 1, and rays at multiples of θ = π/6 and
θ = π/4. You will have to think about what a “negative radius” means. Connect the points
to sketch the whole curve.

θ r = sin θ
0
π/6
π/4
π/3
π/2
2π/3
3π/4
5π/6
π
7π/6
5π/4
4π/3
3π/2
5π/3
7π/4
11π/6

(b) Multiply both sides of the equation r = sin θ by r, convert to rectangular coordinates x
and y, and complete the square to put the equation into a familiar form. Does your equation
agree with your sketch in part (a)?

Taylor / DD 3. On the same set of axes, sketch the graphs of the following functions:

f(x) = cos(x)

L(x) = 1
2
−
√

3
2

(
x− π

3

)
Q(x) = 1

2
−
√

3
2

(
x− π

3

)
− 1

2

(
x− π

3

)2
Explain what the functions L(x) and Q(x) are doing at the point (π/3, 1/2).
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Multivariable Calculus

Taylor / DD 4. Using a computer, on the same set of axes, graph the following functions:

f(x, y) = ex · cos(y)

L(x, y) = −1− x
Q(x, y) = −1− x− x2 + (y − π)2

Explain what the functions L(x, y) and Q(x, y) are doing at the point (0, π,−1).

5. The topographical map below shows level curves, at 100-foot intervals, of the elevationGrad / DD

function f(x, y) for two mountains and the surrounding landscape.

(a) Locate the tops of the two mountains. Write in the level of each curve on the map, until
you have a good understanding of where the higher parts are and where the lower parts are.

(b) For each of the black points in the map, sketch the gradient vector ∇f at that point.

(c) For each black point, also sketch the path (“flow line”) that a rolling ball would take, if
you dropped it there. Also sketch its path up the mountain in backwards time. Remember
that your flow line should intersect perpendicularly with each level curve it crosses.

(d) Are any of your flow lines closed loops? If not, can you construct an example of a
mountainscape that has a flow line that is a closed loop? If so, do it; if not, explain why not.

VF / DD 6. The gradient and the curl.

(a) Prove that the curl of a gradient vector field is always
#»
0 .

(b) Justify geometrically why a nonzero curl cannot occur for a gradient vector field. For
example, you might think about when f(x, y) is an elevation function as above, and consider
that having a nonzero curl is similar to having a flow line that is a closed loop.
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Multivariable Calculus

1. Consider the vector field F shown in the
diagram (thin arrows), and let T denote a
unit tangent vector to a directed curve (thick
arrows). Determine whether∫

C

F •T ds

is positive, negative, or 0 for each di-
rected curve C − in other words, determine
whether the work done by the vector field
on each curve is positive, negative or 0.

2. Sketch the helix h(t) = [a cos t, a sin t, bt].SLI / DD

(a) Compute the direction vectors h′(t) and h′′(t). Could you have anticipated their direc-
tions?

(b) Find the arclength from t = 0 to t = 6π. Verify that your answer is reasonable.

(c) Find the arclength from t = 0 to t = T , for any value T > 0. If h(t) represents the
position of a bumblebee at time T , what does your expression in terms of T represent?

(c) Write an equation for the tangent line to h(t) at t = π/2. Add the line to your sketch.

3. The purpose of this problem is to find the volume in the first octant (the part ofTripInt / DD

3-space where x, y and z are all positive) bounded by the coordinate planes and the plane
3x+ 2y + z = 6.

(a) Find the volume of the region using basic geometry.

(b) Find the volume of the region using a double inte-
gral in the order dy dx.

When we use a double integral over a region R in the
xy-plane to find a volume sitting over that plane, we
can think of R as the shadow of the volume we want
to compute. We don’t have to use the shadow in the
xy-plane − we can use the shadow in any of the three
coordinate planes!

(c) Use the yz-plane as the “shadow plane,” and write
a double integral that finds the volume of the region
using a double integral in the order dz dy.
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Multivariable Calculus

4. Show that, given a function f(x, y) and a point (a, b), the tangent plane to the surfaceLin / DD

z = f(x, y) at the point (a, b, f(a, b)) is

z = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b).

This is also known as the best linear approximation of f at (a, b). Explain the terminology.

5. (Continuation) The following symbols appear in the equation above. Say which onesLin / DD

are variables, and which ones are numbers.

z f(a, b) fx(a, b) x a fy(a, b) y b

6. Let V (x, y) = 1 − x2 − y2 be interpreted asDbInt / PEA

the speed (cm/sec) of fluid that is flowing through
point (x, y) in a pipe whose cross section is the unit
disk x2 + y2 ≤ 1. Assume that the flow is the same
through every cross-section of the pipe. Notice that
the flow is most rapid at the center of the pipe, and
is rather sluggish near the boundary.

The volume of fluid that passes each second through
any small cross-sectional box whose area is ∆A =
∆x·∆y is approximately V (x, y)·∆x·∆y, where (x, y)
is a representative point in the small box. (Here the
symbol ∆ stands for a tiny distance.)

(a) Using an integral with respect to y, combine these approximations to get an approximate
value for the volume of fluid that flows each second through a strip of width ∆x that is parallel
to the y-axis. The result will depend on the value of x representing the position of the strip.

(b) Use integration with respect to x to show that the volume of fluid that leaves the pipe
(through the cross-section at the end) each second is π/2 ≈ 1.57 cc.

Hint : trig substitution, x = sin θ. This requires some clever single-variable calculus, so if
you get stuck at some point, it’s ok; we’ll later discover a better way to work this one out.

7. In setting up a double integral, it is customary to tile the domain of integration usingChVar / PEA

little rectangles whose areas are ∆x · ∆y. In some situations, however, it is better to use
small tiles whose areas can be described as r ·∆θ ·∆r. Sketch such a tile, and explain the
formula for its area. In what situations would such tiles be useful?

April 2020 16b Diana Davis



Multivariable Calculus

1. Suppose that you want to find the equation of the
line that is perpendicular to the parabola y = x2 + 1
at the point (1, 2), as shown to the right.

(a) One way to do this is to find the slope of the curve
y = x2 + 1 at x = 1, and use it to find the equation
of the perpendicular line. Do so.

(b) Another way to think about the curve y = x2 + 1
is that it is a level curve of the function
f(x, y) = y − x2. At what level? Label the level of each curve shown in the picture.

(c) You know that the gradient vector ∇f(1, 2) is perpendicular to the level curve of f(x, y)
that passes through (1, 2). Use this to find the line equation, and notice that in this case,
parametric form is arguably the easiest.

2. In this problem, you will sketch the solid region of
integration for the following integral:∫ x=1

x=0

∫ y=1

y=
√
x

∫ z=1−y

z=0

f(x, y, z) dz dy dx.

(a) First, sketch the shadow of the solid in the xy-
plane, using the limits of integration on the outer two
integrals, in the top picture on the right.

(b) Now, draw that shadow again in perspective, on the
xy-plane in the bottom picture. Then imagine the sur-
faces z = 0 and z = 1− y in the 3D picture, and draw
their intersections with the yz-plane. You can think
about the shadow region as an infinitely tall “cookie
cutter” slicing vertically through both those surfaces,
and the solid region of integration is the part cut out
between the surfaces. Sketch the solid in your 3D pic-
ture (or maybe just its edges).

3. In Page 16 # 1, we estimated the tendency of a vector field F = [P,Q] to point in theVLI / DD

same direction as an oriented curve C, which is a vector line integral. We can compute its
value using the integral

∫
C

F •T ds for a unit tangent vector T.

In the special case when r′(t) = [x′(t), y′(t)] is a unit tangent vector, we can use it as our
unit vector T, and integrate [P,Q] • [x′(t), y′(t)] dt over the curve C.

(a) Sketch the oriented curve D consisting of the line segment from (0,−1) to (0, 1), followed
by the right half of the unit circle from (0, 1) to (0,−1). Hint : it should look like a “D.”

(b) Let F = [−y, x]. Estimate (positive, negative, or zero?)
∫
C

F • T ds for the two parts
C1, C2 of D.

(c) Integrate the vector field F = [−y, x] over D (compute the vector line integral). You
will need to parameterize each part, and compute the unit tangent vector T for each part.
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5. In Page 16 # 6, you integrated
f(x, y) = 1− x2 − y2 over the unit disk
x2 + y2 ≤ 1. This is much easier in
polar coordinates, replacing the Carte-
sian area form dA = dx dy with the po-
lar area form dA = r dr dθ.

(a) Explain why the following two in-
tegrals are equal.∫ x=1

x=−1

∫ y=
√
1−x2

y=−
√
1−x2

(1− x2 − y2) dy dx =

∫ θ=2π

θ=0

∫ r=1

r=0

(1− r2) r dr dθ

(b) Compute the one on the right.

6. Let f(x, y) = 1
4
xy. Sketch the gradient vector field ∇f(x, y)Grad / DD

on [−3, 3]× [−3, 3].

7. A simple curve is one that does not intersect itself. A closedGrThm / DD

curve is one that ends where it starts, that “closes up.” An
oriented curve has a direction of travel. For each curve below,

(a) say whether it is simple and whether it is closed,

(b) draw an arrow on it to give it an orientation, and

(c) shade the region “to the left” of the curve.

8. Using a double integral to evaluate a tricky integral. Let f(0) = 2, and for nonzeroDbInt / PEA

values of x, let f(x) = e−x − e−3x
x

.

(a) Explain why it is not possible to simply compute

∫ ∞
0

f(x) dx.

(b) Find a, b and g(x, y) so that e
−x − e−3x

x
=

∫ b

a

g(x, y) dy.

(c) Evaluate the improper integral

∫ ∞
0

f(x) dx, by using the “trick” of rewriting this integral

as

∫ ∞
0

f(x) dx =

∫ ∞
0

∫ b

a

g(x, y) dy dx and reversing the order of integration.
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1. Consider a vector field F, and a curve C that consists of the part of the curveVLI / DD

r(t) = (x(t), y(t)) from t = a to t = b. As in Page 16 # 1 and Page 17 # 3, the nota-
tion T means a unit tangent vector to r(t), in the direction of motion. As shown below, the
notation ds means a tiny distance along a curve, and the notation ds means a tiny directed
distance along a curve (equivalently, a tiny tangent vector). Justify each of the equalities in
the following chain of equations:∫

C

F • ds =

∫
C

F •T ds =

∫ b

a

F(r(t)) • r′(t)

|r′(t)|
· |r′(t)| dt =

∫ b

a

F(r(t)) • r′(t) dt.

(a) Use the version on the far right to compute the

vector line integral of F =
[−y sinx

x2
, cosx

2x

]
over

the piece of the parabola y = x2 from (π/2, π2/4)
to (5π/4, 25π2/16).

(b) The formula

∫
C

F • ds =

∫ b

a

F(r(t)) • r′(t) dt

gives us a way to calculate vector line integrals
without having to reparameterize our curve to unit
speed, or in other words when the unit tangent vec-
tor T is difficult to compute. Try to parameterize the curve in part (a) to unit speed (i.e.
defining r(t) so that |r′(t)| = 1), and then explain why it is difficult.

2. Consider the following problem: Find the points on theGrad / DD

surface z = 3x2 − 4y2 where the tangent plane is parallel to
3x+2y+2z = 10. Back in Page 11 # 3, you probably thought about
the surface z = 3x2 − 4y2 as the graph z = f(x, y) of the function
f(x, y) = 3x2 − 4y2, and solved this problem either by finding a
normal vector, or by setting partial derivatives equal to each other.
Both are very good methods.

(a) Explain why you can think of this surface as a level surface of
the “temperature” function g(x, y, z) = 3x2 − 4y2 − z, at level 0.

(b) Explain why, at any point (a, b, c) on the surface g(x, y, z) =
3x2 − 4y2 − z = 0, the gradient vector ∇g(a, b, c) is perpendicular
to the surface at that point.

(c) Use this insight to solve the problem.

3. Suppose that you wish to compute
√

3.012 + 3.982 without using a calculator.Lin / DD

(a) Estimate the answer in your head.

(b) Find a linear approximation (think tangent plane) of the function f(x, y) =
√
x2 + y2

at a convenient point close to (3.01, 3.98), and then use it to estimate the answer.

(c) Check your answer with a calculator or computer. How good was the approximation
that you did with just a pencil and paper?
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4. Let f(x, y) give the elevation of the point (x, y) for the region where you are hiking.ConVF / DD

The picture below shows the gradient vector field ∇f(x, y).

(a) Where is the highest point on the map? Where is the lowest point on the map?

(b) Identify important features such as mountaintops, valleys, streams, etc., and explain
how you know where they are.

(c) Mark two points A and B of your choice, far apart. Connect A and B by a curve C1.
Estimate the value (positive? negative? big? small?) of the vector line integral∫

C1

∇f • ds.

(d) Connect the same A and B by a very different curve C2. Estimate∫
C2

∇f • ds.

(e) What is the physical meaning of the integral

∫
C

∇f • ds in this context?

5. Let F be a vector field, and let the curve C be a flow line of F. In such a situation, isVLI / PEA

it always true that

∫
C

F • ds > 0? If so, explain why; if not, give a counterexample.
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1. The familiar equations x = r cos θ, y = r sin θ can be thought of as a mapping from theChVar / PEA

rθ-plane to the xy-plane. In other words, p(r, θ) = (r cos θ, r sin θ) is a function of the type
R2 → R2. Point by point, p transforms regions of the rθ-plane onto regions of the xy-plane.
The picture below shows the effect of p on the rectangle [0, 2]× [0, 2π].

ChVar / DD (a) In the picture on the right, mark the image under p of each of the 5 vertical segments
on the left. Use the different strokes (solid, dashed, dotted) to indicate which is which.

(b) In the picture on the right, mark the image under p of each of the 9 horizontal segments,
using colors to indicate which is which.

(c) I have made little pictures in two small sub-rectangles. Sketch their images under p.

(d) A nice way to think about this mapping is that the rθ-plane is a “rubber sheet,” and
the mapping moves and stretches it when transforming it into the xy-plane. Draw a “movie”
showing two intermediary “frames” between the two pictures shown below.

2. (Continuation) Consider the rectangle defined by 1.9 ≤ r ≤ 2 and 1 ≤ θ ≤ 1.2. SketchChVar / PEA

it in the rθ-plane, and also sketch its image under p in the xy-plane. Then find the area of
each. How do the areas of these two regions compare?

3. (Continuation) The derivative of p at (2, 1), which could be denoted p′(2, 1), is a 2× 2ChVar / PEA

matrix, and its determinant is an interesting number. Explain these statements. It may help

to know that these determinant matrices are usually denoted
∂(x, y)

∂(r, θ)
.
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4. Notation. Here are some equivalent ways of writing down the vector line integral of theVLI / DD

vector field F = [P,Q] over the directed curve C:∫
C

F • ds =

∫
C

[P,Q] • [dx, dy] =

∫
C

(P dx+Q dy).

(a) Justify each of the two equalities above.

(b) Sketch the curve C consisting of the line segment from (−2, 0) to (0, 0), followed by the
line segment from (0, 0) to (0, 3). Let F = [2x2 − 3y, 3x + 2y2]. Use the

∫
C

(P dx + Q dy)
form to compute the vector line integral of F over C, taking advantage of tricks to make
things easier whenever you can.

5. Suppose that F = [P (x, y), Q(x, y)] is a gradient field, i.e. F = [P,Q] = ∇f for someConVF /
PEA

function f(x, y), and that C is a piecewise differentiable path in the xy-plane. It so happens
that the value of

∫
C P dx+Qdy depends only on the endpoints of the curve traced by C.

(a) Verify this for the field F = [xy2, x2y] by selecting at least two different piecewise
differentiable paths from (0,−1) to (1, 1) and evaluating both integrals.

(b) A vector field that is the gradient field for a function f(x, y) is called a conservative
vector field, and f is called its potential function. Find a potential function f for F, and
evaluate f(1, 1)− f(0,−1).

Let’s call this result the Fundamental Theorem of Line Integrals: If F is a conservative vector
field, and its potential function f is defined on a region containing the curve C, then∫

C

F · ds = f(end point of C)− f(starting point of C).

(c) Give a geometric explanation of why this is true. Hint : Recall Page 18 # 4.

(d) Use the Chain Rule and the Fundamental Theorem of Calculus to prove this fact.

6. Some people like to remember, “A vector field is conservative if and only if its curl is 0.”ConVF / DD

Justify this. (By the way, to apply it to a vector field [P,Q] in R2, think of it as [P,Q, 0].)

7. Suppose that you need to know an equation of the tangent plane to a surface S at theParSurf / DD

point P = (0, 1, 1), and you know that the curves

r1(s) = (0, s, s) and r2(t) = (cos t, sin t, 1)

both lie on S. Find an equation for the tangent plane to S at P .
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1. Consider the surfaceParSurf / DD

X(r, θ) = (r cos θ, r sin θ, r) for 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4.

(a) This is called a parameterized surface. Explain the terminology.

(b) Explain why the curves r1(s) and r2(t) from Page 19 # 7 both lie on the surface X(r, θ).

Terminology: We call these the r-curve and the θ-curve through a given point.

(c) We can think of X(r, θ) = (r cos θ, r sin θ, r) as a mapping from the rθ-plane to xyz-
space. Explain the pictures below in this context, and label the one on the right.

(d) Sketch in r1(s) and r2(t) on the right picture above.

2. Green’s Theorem says the following: If R is a closed, bounded region in R2 whoseGrTh / PEA

boundary C consists of finitely many simple, closed, piecewise-differentiable curves, oriented
so that R is on the left when one traverses C, and if F = [P,Q] is differentiable everywhere
in R, then ∮

C

F • ds =

∮
C

(P dx+Q dy) =

∫∫
R

(
∂Q

∂x
− ∂P
∂y

)
dx dy.

Note: The symbol
∮

has a circle to indicate that the line integral is over a closed curve.

(a) Verify the result of Green’s Theorem by explicitly calculating each side of the above
equation when F = [−y, x] and R is the half-disk x2 +y2 ≤ 1, x ≥ 0. Hint : You’ve already
found one side.

(b) Explain why F and R satisfy the requirements of Green’s Theorem.

3. When P (x, y) = −1
2
y and Q(x, y) = 1

2
x, Green’s Theorem is interesting. Explain.GrTh / PEA
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4. In Page 17 # 2, you sketched the solid region of
integration for the integral:∫ x=1

x=0

∫ y=1

y=
√
x

∫ z=1−y

z=0

f(x, y, z) dz dy dx.

In this problem, we’ll write the integral in two other orders
of integration, using the other two coordinate planes as the
“shadow plane,” one at a time. You will need to refer to
your sketch from that problem in order to do this one.

(a) Order dx dy dz: First, sketch the shadow of the solid
in the yz-plane to the right, and use it to write your limits
of integration for y and z. Then, for each point (y, z) in
the shadow region, determine the surface through which
a line, parallel to the x-axis and through the point (y, z),
would enter the solid, and where it would exit the solid.
Use this to write your limits of integration for x, which
will be functions of y and z.

(b) Write the integral in the order dy dz dx: sketch the
shadow of the solid in the xz-plane and use this to deter-
mine your x and z limits of integration. (You will need to
find the curve of intersection of some surfaces, in terms of
x and z.) Then determine the surfaces where a line parallel
to the y-axis enters and exits the solid, and use this to find your y limits of integration.

5. Let F = [ey + y2 + 1, xey + 2xy + cos y].ConVF / DD

(a) Show that F is conservative (see Page 19 # 5), by find-
ing a potential function f(x, y) so that ∇f = F.

(b) Compute the line integral
∫
C

F•ds, where C is the curve
from (−2,−2) to (3, 4) shown in the diagram.

curl / DD

6. The vector field F = [y, 0] = [y, 0, 0] is shown to
the right.

(a) Compute curl F.

(b) There are no obvious “whirlpools” in the vector
field, and yet the curl is nonzero! Imagine that F is
the flow of water, and there are some small chunks
of wood in the water, as shown. Determine whether
the chunks would rotate, and in which direction,
and explain how this relates to your curl calculation.
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1. Cylindrical coordinates are a self-explanatory extension of polar coordinates to 3-Cyl / PEA

dimensional space. The coordinate transformation is (x, y, z) = (r cos θ, r sin θ, z), where
r2 = x2 + y2.

(a) The picture below shows the solid rectangular box [0, 2] × [0, 2π] × [0, 2] in rθz-space.
Show how the cylindrical coordinate transformation c(r, θ, z) = (r cos θ, r sin θ, z) transforms
the solid box into a solid cylinder, by coloring the images of each of its faces.

(b) The equation x2 + y2 + z2 = 1 describes the unit sphere in rectangular coordinates.
Transform it into an equation in cylindrical coordinates.

2. The goal of this problem is to sketch the surface S defined by S(r, θ) = (r cos θ, r sin θ, θ)ParSf / DD

for 0 ≤ θ ≤ 4π and 0 ≤ r ≤ 1, and to learn a strategy for sketching parametric surfaces.

(a) Set r = 1 and sketch the curve described by S(1, θ) = (1 cos θ, 1 sin θ, θ) for 0 ≤ θ ≤ 4π.

(b) Repeat the previous for r = 0 and r = 1/2, and add them to your picture.

(c) Set θ = 0 and sketch the curve described by S(r, 0) = (r, 0, 0) for 0 ≤ r ≤ 1.

(d) Repeat the previous for θ = π/2, π, 3π/2, etc. and add them to your picture.

(e) Sketch the entire surface S.

3. Let C be the rectangular path from (0, 0) to (2, 0), to (2, 3), to (0, 3) to (0, 0). Let

F = [sinx− 2y, y2 + 3x].

Compute
∫
C

F • ds.

Hint : work smarter, not harder.
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4. Let F = [P,Q] = [P,Q, 0] be a vector field. It is an
abuse of notation to write the Green’s Theorem equation as∮

C

P dx+Q dy =

∫∫
D

curl(F) dx dy,

because curl(F) is a vector, not a scalar. But if we take this expression to mean that we

are adding up the z-components of the curl vector
[
0
0
z

]
, we can understand why Green’s

Theorem works: If we break our region into tiny boxes (shown in the diagram above with
not-so-tiny boxes), adding up the curl at each point inside gives us the circulation (vector
line integral) around the boundary, because the contributions from the interior edges cancel
out. Explain this.

5. In Page 10 # 3, we explained the meaning of
the second partial derivatives fxx and fyy as mea-
suring concavity in the x- and y-axis directions.
In this problem, we’ll explore the meaning of fxy,
which you can think of as measuring the “twist”
of a surface. The picture shows level curves of
f(x, y). For each part, say whether the value is
positive, negative or 0, and justify your answer.

(a) fxx = (fx)x asks: how is fx changing, as you move in the positive x-direction? Estimate
fxx at the red point. Then estimate fyy = (fy)y at the blue point.

(b) fxy = (fx)y asks: how is fx changing, as you move your (horizontal) path in the positive
y-direction (shift it upwards)? Estimate fxy at the blue point.
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1. We have already seen Cartesian
and cylindrical coordinates; Spherical coor-
dinates are yet another way of using three
numbers to specify a location in 3-space.
Points on the unit sphere can be described
parametrically by φ, the angle measured
down from the z-axis, and θ, the angle in
standard position measured from the posi-
tive x-axis. The third coordinate, ρ, mea-
sures distance from the origin.

In navigation on the Earth, θ is the angle
usually called longitude (assuming that the
Prime Meridian intersects the x-axis), and is
our familiar θ from polar coordinates. The
angle φ is the complement of the angle usu-
ally called latitude; it is the angle measured down from the North Pole. The Greek letter φ
is called “phi,” pronounced fee. The Greek letter ρ is called “rho” and is pronounced roe.
We take 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, and ρ ≥ 0.

Look up the longitude and latitude of your hometown, and plot its location on the sphere
shown. Also explain the (mathematical) difference between the r used in cylindrical coordi-
nates, and the ρ used in spherical coordinates.

2. We would like to be able to translate
back and forth between rectangular coordinates
(x, y, z) and spherical coordinates (ρ, φ, θ). The
figure on the right shows a zoomed-in version of
the first octant in 3-space, with a point P on the
surface of a sphere. Use the picture to find the
coordinates x, y and z of P in terms of its coor-
dinates ρ, φ and θ. Hint : first find the distance
r in the xy-plane in terms of ρ and φ, and then
use r to find x and y.

3. Given a point P = (x, y, z), how do you find
the spherical coordinate ρ?

4. Describe the configuration of all points with

(a) r = 3 (b) θ = 110◦ (c) z = −2

(d) ρ = 5 (e) φ = π/4.
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5. Sketch the solid of integration corresponding to the integral

∫ 2

0

∫ x

0

∫ y

0

f(x, y, z) dz dy dx.TripInt / DD

Then rewrite this integral in the order dx dy dz.

6. If X(s, t) is a parametric surface, then Xs ×Xt is a normal vector to the surface, andParSf / PEA

‖Xs ×Xt‖ is the area of the parallelogram spanned by Xs and Xt.

(a) Let X(s, t) = [2s+ t, st, s2 + t2]. Find Xs ×Xt.

(b) Find a parameterized surface X(s, t) whose normal vector at the point (s, t) is [s− t, t− s, 0].
How many correct answers are there? Give an answer that is different from everyone else’s
in the class.

7. The integral

∫∫
D

‖Xs ×Xt‖ ds dt is a template for what type of problem?© / PEA
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1. In this problem, we will find the surface area of the part of the cone x2 + y2 = z2 thatParSf / DD

lies between the planes z = 0 and z = R. Sketch this cone.

(a) Parameterize the cone X as a function of r and θ. Part of the job of parameterizing a
surface is to specify the ranges of θ and r that give us the part of the surface that we want.

(b) Integrate
∫∫

D
‖Xr ×Xθ‖ dr dθ over an appropriate region D of the rθ-plane. What is

the meaning of your result?

(c) Check your answer with basic geometry: slice open the cone and lay it flat as a sector
of a circle, and use proportions.

2. Consider the linear mapping g : R2 → R2 defined by x = 3u + v and y = u + 2v. InChVar / PEA

other words, g(u, v) = (3u+ v, u+ 2v). Point by point, g transforms regions of the uv-plane
onto regions of the xy-plane.

(a) Sketch a rectangle, such as D = [1, 2]× [2, 4], in the uv-plane.

(b) Sketch the image of your rectangle D (which will be a simple geometric shape) in the
xy-plane under the transformation g.

Hint : One possible approach is as follows. First, find the image of each of the vertices of D,
by plugging in its coordinates (u, v) into the function g and finding the output point (x, y).
Then find the image of each of the edges of D. For example, to find the image of an edge
where u = 1, plug (1, v) into g to find (parametric equations for) the image edge.

(c) Find the length of one of the rectangle’s edges, and compare it to the length of the image
of that edge under g. How could you calculate the local multiplier for the length from g?

(d) Find the area of the original rectangle and the area of its image, and compare them.

Then calculate the determinant of g′(0, 0), which is the 2× 2 matrix

[
xu(0, 0) xv(0, 0)
yu(0, 0) yv(0, 0)

]
.
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3. Find the volume between the plane z = 0 and the surface z = 2x − y + 13 over theTripInt / DD

region R in the xy-plane bounded by y = x2 − 4 and y = 9− (x− 1)2,

(a) using a double integral and (b) using a triple integral.

VLI / DD 4. On the table in front of you, trace the shape of a circle with your finger, going counter-
clockwise. Keep your finger moving in a circle, around and around, in that same direction,
and at the same time, lift your arm up so that your hand is above your head and you are
looking up at it. Now which direction is the circle going, clockwise or counter-clockwise?

5. Consider the circle z = 1, x2 + y2 = 1, oriented clockwise when viewed from the origin.VLI / DD

(a) Sketch this circle, with its orientation.

(b) Compute the vector line integral of F = 1
2

[yz,−xz, xy] along the circle.

Clairaut’s Theorem (Page 12 # 8) actually says that, when a function f(x, y) is defined and
continuous, and all of its partial derivatives exist and are continuous, all of the mixed partial
derivatives are equal in any order, for example fxyxyxyx = fyyyxxxx. It also works for functions
of more than two variables, so under the same differentiability and continuity assumptions
about a function f(x, y, z, w), we have fzxwxxwzy = fxwxwxyzz, etc.

6. Compute fxyy forClair / DD

f(x, y) = yesin(1/x) + cos(ln(2x5 − 3 sinx)) + xy2.

Hint : This problem is fun!
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1. Consider the functionChVar / PEA

f(u, v) = (u2 − v2, 2uv). We will
apply it to the rectangleR1 defined
by 1 ≤ u ≤ 1.5 and 1 ≤ v ≤ 1.5.

(a) Sketch R1.

(b) Show that the edges of the
image “quadrilateral” Q1 are four
parabolic arcs. Sketch them, and
shade Q1.

(c) First estimate the area of Q1, then calculate it exactly.

(d) What is the ratio of the area of Q1 to the area of R1?

2. (Continuation) Apply f to the rectangle R2 defined by 1 ≤ u ≤ 1.1 and 1 ≤ v ≤ 1.1.ChVar / PEA

The image Q2 is enclosed by four parabolic arcs. Make a detailed sketch of Q2. Calculate
the matrix f ′(1, 1), and then find its determinant. You should expect the area of Q2 to be
approximately 8 times the area of R2. Explain why.

3. (Continuation) Apply the function g(h, k) = (2h − 2k, 2h + 2k) to the rectangle R3ChVar / PEA

defined by 0 ≤ h ≤ 0.1 and 0 ≤ k ≤ 0.1. Sketch the resulting quadrilateral Q3, and compare
it to your sketch of Q2. Then explain what the matrix [ 2 −22 2 ] reveals about the mapping f
near (u, v) = (1, 1).

SSI / DD 4. Let S be the cone surface given by the equation z =
√
x2 + y2 in cylindrical coordinates,

for 0 ≤ x2 + y2 ≤ 16, 0 ≤ z ≤ 4.

(a) Parameterize this surface using just two parameters (Hint : r and θ). Part of the job of
parameterizing a surface is to give the range of each parameter, so remember to do this.

(b) The density of electric charge at a point (x, y, z) on the cone is given by f(x, y, z) = z.
Find the total amount of charge on the cone.

The calculation you did in this problem is called a scalar surface integral.

5. For some functions, it’s easy to find f(a, b) for any point (a, b) you want. For otherLimits / DD

functions, it’s a little harder. For each of the following, find f(0, 0):

(a) f(x, y) =
cos(π + x)

y2 − 1
(b) f(x, y) = y + sinx

x
(c) f(x, y) =

x+ y

2x+ y
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6. (Continuation) You should have been able to do (a) easily, and (b) using a limit, butLimits / DD

for (c) it’s hard to know quite what to do.

(a) Graph the three functions on your computer as surfaces z = f(x, y), and sketch the
results in your notebook. Observe that some graphing programs work better than others for
surfaces with vertical parts. In this case, googling z=(x+y)/(2x+y) works well.

Notice that the last surface is vertical at the origin! We will see that, for f(x, y) =
x+ y

2x+ y
,

if you approach the origin along different lines, you get different limits for f(0, 0).

Walk towards the origin along the line y = 0, coming from the positive x-axis (red path
below). This means that we are considering points of the form (x, 0), as x→ 0+:

lim
(x,0)→(0,0)

x+ y

2x+ y
= lim

x→0+

x
2x

= lim
x→0+

1
2

= 1
2
.

(b) Explain each step of the equation above.

(c) Now do the same calculation for walking towards the origin along the y-axis (black path
below). Does it matter if you are walking from the positive or negative y-axis?

(d) Repeat the calculation one more time, now using a line of the form y = mx, so take a
limit as (x,mx)→ (0, 0). Which numbers can you get as a limit?

(e) The picture below shows a well-behaved surface on the left, and the surface z =
x+ y

2x+ y
on the right. Using the picture, explain the geometric reason for the different values of the
limits that you found in (b) and (c), and also (d).

April 2020 24b Diana Davis



Multivariable Calculus

1. Consider the function f(x, y) = x2

x2 + y2
. Does lim

(x,y)→(0,0)
f(x, y) exist? Explain why orLimits / DD

why not, using calculations, graphs, and any other methods of your choice.

2. In general, given a mapping g : R2 → R2, its derivative is a 2 × 2 matrix-valuedChVar / PEA

function that provides a local multiplier at each point of the domain of g. Each such matrix
describes how suitable domain rectangles are transformed into image “quadrilaterals,” and
its determinant is a multiplier that converts (approximately) the rectangular areas into the
quadrilateral areas. It is customary to refer to either the matrix g′ or its determinant as
the Jacobian of g. Explain why each row of a Jacobian matrix is the gradient of a certain
function.

3. Justify the equation

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv = dx dy.ChVar / PEA

4. Volumes in spherical coor-
dinates. In Page 22 # 2, you
showed that it is possible to
translate between rectangular
and spherical coordinates us-
ing the transformation

(x, y, z) = f(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ),

which maps the infinite prism 0 ≤ ρ and 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π onto all of xyz-space.

(a) Find the 3× 3 Jacobian matrix for the transformation above.

(b) Make calculations that justify the Jacobian formula dx dy dz = ρ2 sinφ · dρ dφ dθ.
(c) The pictures
to the right show
geometric repre-
sentations of the
rectangular area
differential dx dy,
the polar area
differential r dr dθ,
the rectangular
volume differen-
tial dx dy dz,
the cylindrical vol-
ume differential
r dr dθ dz, and the spherical volume differential ρ2 sinφ dρ dφ dθ. Make a volume cal-
culation that explains why the “spherical brick” in the large picture on the right has volume
ρ2 sinφ dρ dφ dθ.
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5. In Page 6 # 3, you showed that integrating the function f(x, y) = 1 over a planar regionSphCyl / DD

R gives the area of R. Similarly, integrating the function f(x, y, z) = 1 over a solid region
gives its volume.

(a) Use a cylindrical integral to find the volume of a cylinder of radius R and height h.

(b) Use a spherical integral to find the volume of a sphere of radius R.

For both of these, remember to use the correct volume differentials (which appear in problem
4), and check your answer against your previous knowledge of geometry.

6. The second derivative test, single-variable calculus. Faced with a function likeOpt / DD

f(x) = 1
4
x3(x− 2)(x+ 2)

and asked to find and classify its critical points, you have learned to do the following:

(a) Find all the critical points of f(x), i.e. the values a for which f ′(a) = 0.

(b) Apply the second derivative test : Find f ′′(x), and for each critical point a, determine if
f ′′(a) is positive, negative or 0. Then use this information to classify each critical point as
a local maximum, a local minimum, or neither.

(c) Graph f(x) on your graphing program, and check that your answers make sense.

(d) Repeat parts (a)–(c) for the function g(x) = x4, and use this to explain why the second
derivative test is sometimes inconclusive, and more information is needed.
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1. Let P be the region in R3 defined by 0 ≤ z ≤ 4 − x2 − y2. Sketch the solid. UseCyl / PEA

cylindrical coordinates to find the volume of P .

2. Find the limit, when approaching the origin along each of the three coordinate axesLimits / DD

(recall Page 24 # 6), and then decide whether the limit exists:

lim
(x,y,z)→(0,0,0)

x2 − y2 + 3z2

x2 + y2 + z2

3. Consider a surface of the form z = f(x, y).Opt / DD

(a) Explain why, if there is a local maximum or local minimum of the function f at the
point (a, b), then fx(a, b) = 0 and fy(a, b) = 0.

(b) Graph the surface z = −x2 − y4 + y2 on your favorite graphing program and sketch the
result in your notebook. How many local maxima and local minima does it have?

Pro tip: It is sometimes easier to see a function’s behavior if you scale it in the z-direction,

e.g. by plotting z =
−x2 − y4 + y2

10
instead.

(c) For the function f(x, y) = −x2− y4 + y2, solve the system of equations

{
fx(x, y) = 0

fy(x, y) = 0

and find the three points (x, y) that satisfy both simultaneously. Check that your answer
makes sense geometrically, using your graph from (b).

(d) Is it always true that if fx(a, b) = 0 and fy(a, b) = 0, then (a, b) is either a local maximum
or a local minimum of f(x, y)? Either explain why it is always true, or give a counterexample.

4. Find the global maximum of the function f(x, y) = 4− x2 + 2x− y2− 4y in two ways:Opt / DD

(a) By completing the square (recall Page 15 # 2(b)), identifying what kind of surface
this is, and figuring out geometrically where the maximum point occurs.

(b) By solving for the point where both partial derivatives are 0.

More problems, with pictures, on the next page!
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5. The map below shows the high points (red) and low points (green) of each state. ChooseOpt / DD

your favorite 10 states, and for each one, write whether the high point occurs:

in its interior along its boundary at a corner somewhere else

For an interactive map of high points where you can zoom in for greater precision, see
https://tinyurl.com/dd50shp.

For fun: Why do many states not have a lowest point marked? (And yet California does!)

6. The figure below shows (fictional, but broadly plausible) topographical lines for threeOpt / DD

of the midwestern states, with elevation marked in thousands of feet.

(a) Mark the highest points in each state, and estimate their elevations.

(b) Does this agree with the actual locations of the highest and lowest points, shown above?
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1. The second derivative test, multivariable calculus. Faced with a function likeOpt / DD

f(x, y) = x3 + 2xy − 2y2 − 10x

and asked to find and classify its critical points, do the following:

(a) Find all the critical points of f(x, y), i.e. the points (a, b) where fx = 0 and fy = 0.

(b) Apply the second derivative test : First, compute fxx(x, y), fxy(x, y) = fyx(x, y), and
fyy(x, y). Then, for each critical point (a, b), find the eigenvalues of the Hessian matrix[

fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

]
.

Then use this information to classify each critical point:

both eigenvalues are positive =⇒ f(a, b) is a local minimum

both eigenvalues are negative =⇒ f(a, b) is a local maximum

one eigenvalue is positive and one is negative =⇒ f(a, b) is a saddle point

some other result =⇒ the test is inconclusive

The above test is easier to understand geometrically. The following test also works.

Compute the determinant D(a, b) of the Hessian matrix for each critical point (a, b). Then

D(a, b) > 0 and fxx(a, b) > 0 =⇒ f(a, b) is a local minimum

D(a, b) > 0 and fxx(a, b) < 0 =⇒ f(a, b) is a local maximum

D(a, b) < 0 =⇒ f(a, b) is a saddle point

D(a, b) = 0 =⇒ the test is inconclusive

(c) Graph f(x, y) on your graphing program, and check that your answers make sense.

The idea is that the signs of the eigenvalues tell you
whether the function is concave-up or concave-down in
each of the two principal directions of the function. If
both are positive, it is concave-up in both directions
(left picture), so the critical point is a local minimum.
The pictures for the other two cases are similar.

2. Consider the function f(x, y) =
xy2

x2 + y2
. Does lim

(x,y)→(0,0)
f(x, y) exist? Explain why orLimits / DD

why not. How would you prove your answer correct?

3. (Continuation) You can use lines through the origin to show that a limit doesn’t exist,Limits / DD

but simply showing that the limit along any line through the origin is the same isn’t enough
to prove that the limit does exist. In Page 29 # 1, we’ll see an example of how it can go
wrong. The best way to prove that a limit does exist is to convert to polar coordinates, and
take a limit as r → 0, to approach the origin from every direction simultaneously. Try this.
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VSI / DD 4. For our familiar cone surface X(r, θ) = [r cos θ, r sin θ, r], the vec-
tors Xr ×Xθ and Xθ ×Xr both give normal vectors to the surface.
One points into the cone, while the other points out of the cone. De-
termine which is which, sketch the cone, and draw in these vectors.

VSI / DD 5. (Continuation) Consider the vector fields F = [x, y, z],
G = [x, y, 0], and H = [−y, x, 0]. For each of these, estimate (is
it positive, negative or 0?) the vector surface integral of the vector
field over the cone, with outward-facing normal vector.

This value is denoted by

∫∫
X

F • dS and is called flux. It is the sum

of the dot product of the vector field with the chosen normal vector
at each point of the surface.

6. The Outsiders club takes a hike, shown as the green curve on the topographical mapLM / DD

below. For this hike, determine:

(a) Parts of the hike that were flat, (b) The steepest part of the hike,

(c) The highest elevation achieved,

(d) The lowest elevation achieved. Hint : The level curves are at 100-foot intervals.

(e) Mark all of the points whose elevation you would need to check, in order to be sure that
you found the maximum and minimum elevation in parts (c) and (d). What do all of these
points have in common?
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1. The state high point problem, and the Outsiders hike problem, are examples of optimizingOpt / DD

under a constraint. For the state high points, you are trying to maximize elevation, under
the constraint that you must be in the region of the plane called “Pennsylvania.”

(a) Give an example of something you are trying to maximize or minimize in your own life,
and the associated constraints.

(b) Explain why, if you want the maximum and minimum
values of a function on a (closed, bounded) region of the
plane, you need to check the function value on all of the
following points:

1. The critical points of the func-
tion that are inside the region.

2. The critical points of the
boundary “cross-section” func-
tions, which are the surface
function restricted to each
boundary.

3. The corners of the region.

(c) For the surface shown above, which is part of the graph of f(x, y) = x3+2xy−2y2−10x,
mark interior critical points in black, critical points of the boundary functions in blue, and
the corner points in red. Based on the picture, where do you think the maximum and
minimum values of the function occur, over the square region [−5, 5]× [−5, 5] shown?

2. Now we’re ready to do it. For f(x, y) = x3 + 2xy − 2y2 − 10x:

(a) Write down, on the list to the right, the critical points of f that lie
inside the region where −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5. Hint : You have
already found all of the critical points.

(b) We can take a vertical cross section of f along the boundary x = 5,
which is a function of y:

f(5, y) = 53 + 2 · 5 · y − 2y2 − 10 · 5 = 125 + 10y − 2y2 − 50.

Find its critical points, and keep those satisfying −5 ≤ y ≤ 5:

f(y) = 75 + 10y − 2y2

=⇒ f ′(y) = 10− 4y = 0 =⇒ y = 2.5.

so we have added (5, 2.5) to the list. Now find the critical points along
the other three boundaries and add them as well.

(c) Add the four corner points to your list, which should have 11 points
listed. Also plot each point on your list on the square region, shown above.

(d) Find the value of f at each of the points on your list, and determine the maximum and
minimum values of f(x, y) on the square region. Check that your answer agrees with 1(c).
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VSI / DD 3. Compatible orientations for a surface and its boundary

For a vector line integral over a curve C, we integrate along an oriented curve: it has a
direction of travel. There are two choices: the two directions that are tangent to the curve.

For vector surface integral over a surface S, we integrate over an oriented surface: it has an
“up” direction. There are two choices: the two directions perpendicular to the surface.

We should make sure these orientations are compatible when an oriented curve C is the
boundary of an oriented surface S. Here is the rule for compatible orientations: Imagine
that you are walking along the boundary curve of the surface, in the direction of the curve’s
orientation, with your head pointing in the direction of the surface’s orientation. Orient the
curve so that as you walk in the forward direction, your left arm is over the surface.

(a) For the first two surfaces below, you will see that there is a person walking along the
curve, with their head in the direction of the surface’s orientation (indicated with an arrow),
and their left arm over the surface. Given that the arm sticking out is their left arm, put a
smile on their face and color in the hair on the back of their head, for both surfaces. Also
draw in the appropriate orientation (direction of travel) on the boundary curves.

(b) For the third and fourth surfaces, the orientation (direction of travel) of the boundary
curve is given. Given that the person is walking along the curve in the direction of its
orientation, with their left arm over the surface, decide whether the inward-facing or outward-
facing person is the correct one. Then draw in their smiling face and their hair, and give the
surface an orientation (inward or outward) using an arrow.

(c) The rules above generalize the notion of “counter-clockwise” to 3D. Explain why these
compatibility rules agree with the conditions of Green’s Theorem: the “surface” is a region in
the xy-plane oriented in the positive z-direction, and its boundary curve is counter-clockwise.

4. The weight of a wedge of cheese that gets denser as you move north.Cyl / DD

(a) Sketch the solid region W described by x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 2.

(b) Calculate

∫∫∫
W
y dV by converting to cylindrical coordinates.

5. Refer to Page 27 # 6. Explain why, if you are trying to find the maximum or minimumLM / DD

value of a function that occurs on a given constraint curve, you should check all the points
where the constraint curve is tangent to a level curve of the function. This insight will lead
us to the idea of Lagrange multipliers.
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1. We’ve considered several different limits of the form lim
(x,y)→(0,0)

f(x, y). Sometimes (as inLimits / DD

Page 24 # 6 and Page 26 # 2), approaching the origin along different lines gives different
values for the limit, so we know that the limit doesn’t exist. Other times (as in Page 27 # 3),
approaching the origin along lines of the form y = mx gives the same value for each m, and
then we’d like to be able to say that the limit exists. I claimed in Page 27 # 3 that this can
go wrong, which is why we need to convert to polar coordinates. I promised you an example
of it going wrong, and here it is: a case where approaching the origin along different curved

paths yields different values. Let’s consider the function f(x, y) =
x2y

x4 + y2
.

(a) Take a limit of f(x, y) as (x, y)→ (0, 0), approaching the origin along lines of the form
y = mx, and show that the limit is 0 for every value of m.

(b) Now approach the origin along the parabola y = x2, and show that the limit is not 0.

(c) The curve y = x2 was chosen so that the numerator and denominator of the fraction
have the same degree: the maximum total exponent of each term is 4. Looking back at
previous examples, explain how you can use the degree of the numerator and denominator
of a function to help you decide whether a limit is likely to exist.

2. Find the maximum and minimum values of the function f(x, y) = 1− x3− y2, shown asOpt / DD

the grey surface, on the unit disk x2 + y2 ≤ 1, whose image in the picture is a red disk with
blue boundary, by making and checking a list as in Page 28 # 2. Hint : for the boundary,
write x = cos θ, y = sin θ to find f as a function of θ, and solve f ′(θ) = 0. Check that your
answers agree with the picture.

3. The flux of the vector field F through the surfaceVSI / DD

S is given by
∫∫
S F • dS. You can think of the surface

S = X(s, t) being a net in a stream whose current is
given by the vector field F, and the integral measures
how much water flows through the net. The word flux
is from physics, measuring the amount of electric field
across a surface. The dS is a vector quantity, and the
integral adds up dot products to measure how much the
vector field F points in the same direction as the normal
vector to the tiny piece of oriented surface dS.

Let S1 be the cone z =
√
x2 + y2 below z = 1, oriented

outward (downward). Let E = [x, 0,−z] be an electric
force field. Compute the electric flux of E across S1, by
computing∫∫

S

E • dS =

∫∫
D

E(X(r, θ)) • (Xθ ×Xr) dr dθ

over an appropriate region D of the rθ-plane.
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4. (Continuation) We can also write∫∫
S

F • dS =

∫∫
S

F • n dS,

where n is a unit normal vector and dS is a
tiny bit of surface area. Explain. This form is
convenient when the normal vector n is easy
to compute. Let S2 be the “cap” of the cone
in the previous problem: the unit disk at a
height of z = 1, with upward-facing normal
vector (chosen just so that the whole closed
surface, cone plus cap, is oriented outward).
Use the integral on the right-hand side above
to compute the electric flux of E over S2.

Some integral practice.

5. Sketch the solid region that is above the xy-plane, outside the cone x2 + y2 = z2, andSph / DD

inside the unit sphere. Then compute its volume. Which coordinates are most convenient?

6. The weight of a different block of cheese, which gets denser as you go up.Sph / DD

(a) Sketch the solid region W described by x2 + y2 + z2 ≤ 1 and x, y, z ≥ 0.

(b) Calculate

∫∫∫
W
z dV .
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1. Lagrange multipliers: the coolest idea inLM / DD

this course. Suppose we wish to maximize or
minimize the function f(x, y) = 1− x2 − y2,
under the constraint g(x, y) = x2 + y2/4 = 1.

(a) The top picture to the right shows six (!)
level curves in the xy-plane for f(x, y) (blue).
Label each one with its level.

(b) The same picture shows the constraint curve
x2 + y2/4 = 1 in red. Circle the points on it
where you think the maximum and minimum val-
ues of f occur.

(c) Make up a story about a hike to go along
with this problem (recall Page 27 # 6, and refer
to the green picture below).

(d) Express the constraint curve as a level curve of the
function g(x, y) = x2 + y2/4 at level 1, and explain why
you can do this.

(e) The Lagrange multipliers equation says that, at a
maximum or minimum point (a, b) of the function f(x, y)
on the constraint curve g(x, y) = c,

∇f(a, b) = λ · ∇g(a, b),

for some number λ. Explain geometrically what the equa-
tion is saying, and why it is true.

(f) The Lagrange multipliers equation above has three variables: x, y and λ. In fact, it
consists of three equations: one each from the x- and y-components of the gradient, plus
one from the constraint equation. Write down and solve the Lagrange multipliers system
of equations for the given function and constraint, and check that your answers agree with
your guess from (b).

Opt

2. Find all of the critical points of the function

f(x, y) = 4x− 3x3 − 2xy2

and then classify each of them using the second derivative test (recall Page 27 # 1). Check
your answers by graphing the function with your favorite graphing program.

3. Consider the limit lim
(x,y,z)→(0,0,0)

x3 + y3 + z3

x2 + y2 + z2
.Limits / DD

(a) Show that the limit, when approaching the origin along each of the three coordinate
axes, is the same in each case.

(b) Convert to spherical coordinates and determine whether the limit exists.
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VSI / DD

4. Let F = [−y, x, z].

(a) Compute the vector line integral of F
over the curve C consisting of the unit circle
x2 + y2 = 1, z = 0, oriented counter-clockwise
as viewed from the positive z-direction.

(b) Compute the vector surface integral
of curlF over the surface S defined by
z =

√
1− x2 − y2, oriented outward.

You will need to parameterize the surface
(Hint : spherical coordinates), calculate the
vector Xφ ×Xθ, and compute a vector surface
integral (Hint : Page 29 # 3).

5. You might have wondered, for the “circle in 3-space” in Page 23 # 5, whether there isStokes / DD

a three-dimensional version of Green’s Theorem that you could apply. Indeed there is:

Given a differentiable vector field F defined in R3, let S be an oriented surface, and let ∂S
be its compatibly oriented boundary curve (as defined in Page 28 # 3).

Stokes’s Theorem states that ∫
∂S

F • ds =

∫∫
S

curlF • dS.

In words, Stokes’s Theorem says the circulation of F around the boundary of S is equal to
the flux of curlF through S itself.

(a) Explain why your answers to (a) and (b) of problem 4 came out the same. In particular,
be sure to check that F, S and C = ∂S satisfy the requirements of the theorem.

(b) Explain how Green’s Theorem is a special case of Stokes’s Theorem.

The following problem is an extension of #5. If you solved #5 at home and you have time,
please try #6. Otherwise, please work on #6 in your group after you are happy with #5.

Stokes / DD 6. In the problem above, the symbol “∂” means “boundary.” Elsewhere it has meant
“derivative.” You might be wondering: why is the same symbol used for different things?

(a) The boundary of a solid disk is a circle. Differentiate πr2 with respect to r.

(b) The boundary of a solid ball is a sphere. Differentiate 4
3
πr3 with respect to r.

(c) Explain the relationship between “boundary” and “derivative.”
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Stokes’s Theorem (Page 30 # 5) relates a vector surface integral over a surface, to a vector
line integral over its boundary. Sometimes one of these is difficult or impossible to compute,
and the other is easier.

1. Let F =
[
(y − 1) sin exy

z
, xyzexyz, xz + y

]
be an electric field, andStokes / DD

let your tinfoil hat S be the piece of the paraboloid y = x2 + z2 with
y ≤ 1, oriented with inward normal vectors. Sketch this surface and its
(compatibly oriented, remember Page 28 # 3) boundary curve. Then
compute the amount of curlF that will enter your sleeping head,∫∫

S

curlF • dS.

2. Let F = [x sin ex − xz,−2xy, z2 + y] give the direction and strength of the wind onStokes / DD

Swarthmore’s campus, and let C be the (oriented) triangular path from (2, 0, 0), to (0, 2, 0),
to (0, 0, 2), and back to (2, 0, 0) followed by the long-range drone that you have sent to
campus to cut some flowers from the flowering trees, which it will then bring to you . Sketch
this path. Then compute how much the wind helps or hurts the drone on its journey,∫

C

F • ds.

Hint : If you’re having trouble computing the given integrals, go back and reread the first
two sentences at the top of this page.

3. Hyperbolic coordinates. The appearance of the integralChVar / PEA ∫ 4

1

∫ 4/x

1/x

xy

1 + x2y2
dy dx

suggests that it would be helpful if xy were a single variable. With this in mind, consider
the transformation of coordinates (x, y) = (u, v/u).

(a) Sketch the given region of integration in the xy-plane.

(b) Show that this region is the image of a square region in the uv-plane.

(c) Evaluate the given integral by making the indicated change of variables.

Hint : Recall Page 24 # 3 and Page 25 # 2.

More problems on the next page!
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LM / DD 4. Recall that the Lagrange multipliers equation
(Page 30 # 1) says that the maximum and mini-
mum values of a function f(x, y) along a constraint
curve g(x, y) = c occur when the constraint curve is
tangent to a level curve of the function. In the pic-
ture on the right, two families of curves are shown:

• Level curves of f(x, y) = x2 + y2 (blue)

• Level curves of g(x, y) = x4 + y4 (red)

(a) Mark all of the points (there are a lot!) where
red and blue curves are tangent to each other.

(b) Only finitely many level curves are shown. If we
drew all possible level curves, the points of tangency
would themselves form curves. Sketch in these “tan-
gency curves” and write down your best guess for their equations.

5. Suppose that you are skateboarding in aLM / DD

paraboloid-shaped skate park, following a path
that is like a square with rounded corners, which
can be described by the equation x4 + y4 = 1.
You might wonder, how high up do you get, and
how low, while thusly entertained?

To answer this burning question, use the method
of Lagrange multipliers to find the maximum and
minimum values of the function f(x, y) = x2+y2,
under the constraint x4 + y4 = 1.

A view of the skate park, with the skateboarding route projected onto it, is shown above,
from underneath the skate park.

LM / DD 6. Explain the relationship between the work you did in the preceding two problems.

The idea here is that the Lagrange multipliers equation ∇f(x, y) = λ ·∇g(x, y) consists of
two equations in three variables. Thus, it’s not possible to find a single solution; it gives you
an entire curve (or several curves, as in this case) of solutions. This tells you where all the
solutions would occur, for different values of the constraint. Then you apply your particular
constraint equation, to find the solution for your particular value of the constraint.
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We now have several tools in our metaphorical mathematical toolbox for dealing with
multivariable limits:

• Just plug in the point,

• Approach the origin along the axes, or along other
special lines,

• Approach the origin along all lines of the form y = mx,

• Convert to polar (or spherical) coordinates and take
the limit as r → 0 (or ρ→ 0).

1. Of the above tools (methods):Limits / DD

(a) Which one(s) should you use when you think the limit doesn’t exist?

(b) Which one(s) can you use to prove that the limit does exist?

2. For each of the following, say which method you would use, and why. Then use thatLimits / DD

method to determine whether the limit exists, and if so, what it is.

lim
(x,y)→(0,0)

x2 − y2
x2 + y2

lim
(x,y)→(0,0)

xy√
x2 + y2

lim
(x,y)→(0,0)

x2 + 5
x− y + 3

lim
(x,y)→(0,0)

x3 + y3

xy2

3. You have $50.00 to spend on ice cream for yourself and your friends. Each scoop sLM / DD

costs $1.50, and each waffle cone c costs $1. The group’s utility (“happiness”) from eating s
scoops and c cones is measured by U(s, c) =

√
sc.

(a) In blue on the picture to the right,
sketch level curves of the utility function
for at least five different levels, and label
the levels.

(b) In red, add in the line that is your
budget constraint curve: the points repre-
senting all of the combinations of numbers
(s, c) of scoops and cones that you can af-
ford if you spend all of your money.

(c) Mark the approximate point on your
budget constraint that maximizes total
utility, and estimate its (s, c) value.

(d) Calculate: how many scoops and
cones should you buy, to maximize total
happiness?

Hint : Lagrange multipliers
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TripInt / DD

4. Compute

∫ 1

0

∫ 1

y

∫ z

0

sin(z3) dx dz dy. Hint : use something you’ve learned in this course.

5. Sketch the portion of the sphere of radius 4, centered at the origin, that is above theSSI / DD

plane z = 2. Then find its surface area (note: area of sphere, not volume of solid ball).

The following problem is an extension of #5. If you solved #5 at home and you have time,
please try #6. Otherwise, please work on #6 in your group after you are happy with #5.

6. The equal crust property.SSI / PEA

(a) Calculate the area of the part of the unit sphere (note:
area of sphere, not volume of solid ball) that is found between
the parallel planes z = a and z = b, where −1 ≤ a ≤ b ≤ 1.

(b) You should find that your answer depends only on the
separation between the planes, not on the planes themselves.
Explain why this result is named as it is.
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Limits / DD 1. Continuous functions. A function f(x, y) is said to be con-
tinuous at (a, b) if the limit lim

(x,y)→(a,b)
exists, and if this limit is

equal to the function value f(a, b).

(a) Find the limit, or show that it does not exist:

lim
(x,y)→(0,0)

2x2 − y2√
x2 + y2

.

Consider the function

f(x, y) =


2x2 − y2√
x2 + y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

.

(b) Is this function continuous at (0, 0)? Is it continuous at (−1, 3)?

(d) Graph the surface z =
2x2 − y2√
x2 + y2

on your favorite graphing program to check your

answer, and sketch the surface in your notebook.

Our last big theorem is Gauss’s Theorem, also called the Divergence Theorem. If F is a
vector field with continuous partial derivatives throughout a solid region E in R3, where the
boundary surface ∂E of E has outward orientation, then Gauss’s Theorem says that∫∫

∂E

F • dS =

∫∫∫
E

divF dV.

2. Let F = [5x, 5y, 3], and let S be the unit sphereGauss / DD

centered at the origin and oriented outward. Compute
the flux of F over S in two ways:

(a) by computing the vector surface integral directly;

(b) by applying Gauss’s Theorem.

3. (For fun) Suppose that E is a solid region in R3.© / DD

Must its boundary surface ∂E be a closed surface, or
can ∂E also have a boundary?

The picture to the right shows the design of the
“Iconic Wall,” a limestone engraving at the Simons
Center for Geometry and Physics at Stony Brook Uni-
versity. The answer to this problem is engraved on the
wall, along with many other fundamental results. Maybe you recognize some of them!
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LM / DD 4. A deep dive into silos. A silo is a building used to
store cattle feed (fermented silage). Most farms have
at least one silo, and sometimes several. A typical
silo is a cylindrical building with a hemispherical top,
as shown to the right. Let the radius of such a silo
be r, and the height of the cylindrical part be h,
measured in feet.

(a) Find the total surface area in terms of r and h,
not including the floor. (The floor is “free.”)

(b) Find the volume inside the cylindrical part. Also
find the volume enclosed by the hemispherical top.

(c) Typically, a silo is made of sheet metal. Suppose
that you have a given amount (area) of sheet metal,
and you wish to maximize the volume of the silo you
construct out of it, assuming that silage is only in
the cylindrical part. Write and solve the associated
Lagrange multipliers equation ∇f = λ∇g.

(d) Your solution from the previous part should be
2r = h. Explain why you got a curve of solutions,
rather than one exact answer, and also explain the
meaning of the solution 2r = h. Sketch a silo with this shape. Does the silo in the picture
(or do other silos you have seen) have these proportions? If not, why not?

(e) Suppose that you have a given volume of silage to store in your silo, and you wish to
minimize the amount of sheet metal used to construct it assuming that silage is only in the
cylindrical part. Write and solve the associated Lagrange multipliers equation as above.

(f) You have 384π square feet of sheet metal. Find r and h to maximize the silo’s volume.

(g) You have 2000π cubic feet of silage. Find r and h to minimize the sheet metal used.

The following problem is an extension of #4. If you solved #4 at home and you have time,
please try #5. Otherwise, please work on #5 in your group after you are happy with #4.

LM / DD 5. (Continuation) Write and solve the Lagrange multipliers equation, now assuming that
silage can fill both the cylindrical and the hemispherical part of the silo. Your answer should
surprise you. Explain why it makes sense. If you are not sure, try washing your table with
sudsy soap for inspiration.
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Cont / SC 1. Consider the function

f(x, y) =


x2y

x2 + y2
if (x, y) 6= (0, 0)

a if (x, y) = (0, 0)
.

Find a value of a that makes f(x, y) continuous at
(0, 0), or explain why this is impossible.

2. Apply Gauss’s Theorem to compute the flux of the vector field F = [x, 0,−z] over theGauss / DD

closed surface S consisting of the cone z =
√
x2 + y2 below z = 1, plus its circular cap, both

oriented outward. Check your answer with your answers to Page 29 # 3–4.

ChVar / DD

3. In this problem, we will compute

∫∫
R

(x2 − y2) dA, where R is the “diamond”-shaped

region with vertices (±1, 0), (0,±1).

(a) Sketch and shade in R in the xy-plane.

(b) Write down equations for the four lines that bound R, and express each one with all of
the variables on the left and the constant on the right.

(c) Consider the change of variables u = x+ y, v = x− y. Explain why this is a good choice
both for the function f(x, y) = x2 − y2 and also for the region R.

(d) Sketch and shade in the corresponding region R∗ in the uv-plane that is the image of R
under the transformation (u, v) = T (x, y) = (x+ y, x− y).

(e) Find the Jacobian expansion factor

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣.
Hint : One way is to solve for x and y as functions of u and v. A clever alternate way is

to compute the Jacobian
∂(u, v)

∂(x, y)
, and remember that the determinant of the matrix M−1 is

the reciprocal of the determinant of M .

(f) Compute the integral from the first line. Hint : change of variables
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Polar / DD 4. The bell curve, or normal distribution, or Gaussian distribution, is given by

f(x) = 1√
2π

e−x
2/2.

Because bell curves describe many naturally-occurring phenomena, being able to integrate
this function is very important to statisticians and many other people. For simplicity, we’ll
ignore the constants for now and just use g(x) = e−x

2
.

(a) Explain why it’s hard to integrate

∫ ∞
−∞

e−x
2

dx.

We want this number, so let’s give it a name: A =

∫ ∞
−∞

e−x
2

dx.

(b) Justify each of the four following equalities:

A2 =

(∫ ∞
−∞

e−x
2

dx

)2

=

(∫ ∞
−∞

e−x
2

dx

)
·
(∫ ∞
−∞

e−x
2

dx

)
=

(∫ ∞
−∞

e−x
2

dx

)
·
(∫ ∞
−∞

e−y
2

dy

)
=

∫ y=∞

y=−∞

∫ x=∞

x=−∞
e−x

2−y2 dx dy.

(c) Change to polar coordinates and show that A =
√
π.

(d) For the normal distribution function f(x) given at the beginning, show that the total
area under the curve is 1, and the inflection points occur at ±1.

These are the reasons for the constants 1/
√

2π and 2 in f(x).

5. Consider a vector field F that is continuous on all of R3, and let S be any closed surface© / DD

you want, with whichever orientation. Compute

∫∫
S

curlF • dS.
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Limits / DD 1. For each expression below, compute the limit or explain why it does not exist.

(a) lim
(x,y)→(1,2)

x2 − xy − 2y2

x2 − 4y2
(b) lim

(x,y)→(0,0)

x2 + xy − 2y2

x2 + y2
(c) lim

(x,y)→(0,0)

xy2

x2 + y4

Opt / DD 2. Find the maximum and minimum values achieved
by the function

f(x, y) = x2 + xy + y2 − 6y

over the rectangular region [−3, 3]× [0, 5].

Hint : Make and check a list as in Page 28 # 2.

ConVF / DD

3. Is the vector field F =

−y cosx+ yz + zexz

z2 − sinx+ xz
2yz + xy + xexz


conservative?

VLI / SC 4. Swarthmore is a very windy place. By observ-
ing the paths of the leaves that are blowing around
and their resulting flow lines, you are able to de-
duce that the wind’s vector field can be described by
F = [x2 + y, y − x]. Your path from breakfast at Sharples to multivariable calculus class in
Singer is the part of the parabola y = x2 from (0, 0) to (1, 1). Does the wind help or hinder
your journey to class, and by how much?

5. A 400-meter running track is made
of two parallel straightaways, connected by
semicircular curves, as shown. Suppose that
you want to choose the dimensions of the
track to maximize the area of the rectangu-
lar field at its center. How long should the
straightaways be? Solve this problem using

(a) Lagrange multipliers; (b) single-variable calculus.
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1. Closing off a curve, to apply Green’s Theorem.GrThm / DD

Let your path C of half-circumnavigating your house be the
part of the unit circle from (1, 0) to (−1, 0), oriented counter-
clockwise, and let the wind be described by

F =

[
y2x+ x2

x2y + x− ey sin y
]
.

(a) Add the orientation of C to the picture.

(b) To figure out how hard it will be to take this walk, we would like to compute the line
integral of F over C. We cannot do this directly, because of the ey sin y term. Explain.

(c) Explain why applying Green’s Theorem would make the ey sin y term go away (so we
would dearly love to use it), and also why we cannot apply Green’s Theorem directly to C.

(d) Here is a clever trick: we will “close off” the region so that we can apply Green’s
Theorem. Let S be the line segment from (−1, 0) to (1, 0), and let D be the region now
cleverly enclosed by the curves C and S.

(e) Explain why

∫
C

F · ds +

∫
S

F · ds =

∫∫
D

curl(F) dA.

(f) Use this magic trick to compute

∫
C

F · ds.

2. Breaking a vector field into its conservative and non-conservative parts.ConVF / DD

Let the vector field of difficulty of walking around Swarthmore be defined by

F =

 −y + yey

x+ xey + xyey + z
y + 2

 ,
and let your path C be the left half of the unit circle in the xy-plane, oriented clockwise as
viewed from the positive z-axis.

(a) Write F as the sum of two vector fields F1 (“elevation change”) and F2 (“wind”), where
F1 is completely conservative, and no part of F2 is conservative. Hint : Page 19 # 6.

(b) Explain why

∫
C

F • ds =

∫
C

F1 • ds +

∫
C

F2 • ds.

(c) Use the above to compute the line integral of F over C.

LM / DD 3. Ryan is making a cardboard chair in architecture class. The height
of each part is the same (some length h), and the width and depth are
the same, some length w. Ryan’s cat likes to sit under the chair, as
shown, so Ryan wishes to maximize the volume of the space under the
chair. The instructor has given the students 300 in2 of cardboard to
make their chairs. What dimensions should Ryan use?
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4. Replacing a curve, using Green’s
Theorem.

Suppose that we want to integrate the
“unit speed circulation” vector field

F =

[
−y

x2 + y2
, x
x2 + y2

]
over the closed curve C, oriented
counter-clockwise, shown as a solid
curve in the figure. We can’t compute
it directly, because we don’t have equa-
tions for C. We can’t apply Green’s
Theorem, because F = [P,Q] isn’t dif-
ferentiable at the origin (it’s not even
defined there), which is in the region en-
closed by C.

Amazingly, we can still compute the integral!

(a) Let C1 be the unit circle (shown dashed in the figure), oriented clockwise. Let C2 be an
oriented line segment connecting the two curves, as shown dotted in the picture (the same
curve oriented in the opposite direction, −C2, is also shown). Let D be the solid region
between C1 and C. Justify the equation∫

C

F • ds +

∫
C2

F • ds +

∫
C1

F • ds +

∫
−C2

F • ds =

∫∫
D

(
∂Q

∂x
− ∂P
∂y

)
dx dy.

(b) Explain why this simplifies to∫
C

F • ds =

∫∫
D

(
∂Q

∂x
− ∂P
∂y

)
dx dy −

∫
C1

F • ds.

Compute the right side explicitly. The seemingly impossible is possible!

Grad / DD 5. Fun with dimensions.

(a) A function f(x, y) is a function of two variables. We write f : R2 → R, because the
input is a point (x, y) in two real dimensions (R2), and the output is a real number in one
dimension (R). On the other hand, we often think of f as a surface in R3, which we graph
as z = f(x, y) to give us (x, y, z) in R3. Make a color-coded picture of a surface in R3,
showing the inputs and outputs of a function f(x, y) and the associated surface z = f(x, y).
Explain the difference between the function and the surface.

(b) Given a function f(x, y), its gradient ∇f = [fx, fy] is a vector in R2. We often think of
the gradient ∇f(a, b) as telling us about the steepness of the surface z = f(x, y) at the point
(a, b, f(a, b). Make a picture showing a surface f(x, y), a gradient vector in the xy-plane
∇f(a, b) at some point (a, b) in the xy-plane, and explain how it is that a 2D vector tells us
something about a 3D surface.
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LM / DD 1. More fishies.

You’re going to build a large aquarium in the shape of an open rect-
angular box without a top, which needs to hold 81 cubic feet of water.
You will use slate for the rectangular base, and glass for the sides. Slate
costs $12 per square foot, and glass costs $2 per square foot. Find the
dimensions of the aquarium that minimize the cost.

2. Replacing a surface, using Stokes’s Theorem.

Consider a vector field F whose curl is

curlF =
[
y sin ez

2

, (y − 1)esin(x) + 2,−zesin(x)
]
,

and consider the “glove” surface S shown in the
figure, with outward normal. We wish to find
the value of

∫∫
S curlF • dS. We cannot do this

directly because curlF is awful and we don’t have
equations for S.

(a) One option is to apply Stokes’ Theorem and
instead integrate

∫
C

F • ds over the boundary
curve C = ∂S, which in this case is the unit circle y = 1, x2 + z2 = 1. Which orienta-
tion should C have? Draw it in.

Unfortunately, we cannot do this, either, since we cannot find F. Amazingly, we can still
compute

∫∫
S curlF • dS!

(b) Consider the unit disk D defined by y = 1, x2 + z2 ≤ 1, whose boundary is also C.
Sketch D in the picture. By Stokes’s Theorem,∫∫

S
curlF • dS =

∫
C

F • ds and also

∫
C

F • ds =

∫∫
D

curlF • dS,

as long as D has compatible orientation with C, so∫∫
S

curlF • dS =

∫∫
D

curlF • dS.

Justify the three equations above.

(c) Compute the right-hand side to finish the job.

(d) Is D the only surface we could have used?

VLI / DD 3. Compute the vector line integral of F = [sin y + 2xy2, x cos y + 2x2y] over the curve C
from (2, 0) to (0,−2) consisting of three-quarters of the circle of radius 2 centered at the
origin, traversed counter-clockwise. Hint : work smarter, not harder

April 2020 37a Diana Davis



Multivariable Calculus

VSI / DD 4. Fun with arts and crafts.

You wrap a red strip of paper around a can-
dle, as shown, and then use a sharp knife
to cut the candle at a 45◦ angle, cutting the
strip (and the candle) into two parts. You
unwrap the top part of the strip and wonder,
what is its area?

Assume that the candle is part of the solid
unit cylinder x2 + y2 ≤ 1, that the strip of
paper originally satisfied x2 + y2 = 1 and
0 ≤ z ≤ 2, and that the knife’s cut was in the plane z = x+ 1.

(a) Find the surface area of the unwrapped part of the paper.

Hint : The key here is parameterizing (using a surface parameterization with two variables,
maybe θ and z) the part of the paper above the cut.

(b) Check your answer using geometry. Hint : symmetry.

DirDer / DD 5. In Page 14 # 3, you were given an elevation function f(x, y)
that described a certain mountain. You used the gradient vec-
tor ∇f to find that, at the particular point where you were
standing, the direction of steepest ascent up this mountain was
southwest (γ = 225◦). Then you used directional derivatives
to find a direction of travel so that you would only ascend at
half of the steepest rate. There turned out to be two options:
either 60◦ to the left (counter-clockwise) or 60◦ to the right
(clockwise) from direction γ.

Explain why it makes sense that there are two options of which
direction you can hike, that give you the same steepness. Then
explain how switchbacks on a trail (see picture) use this idea
from directional derivatives, to create a hike that goes up the
mountain, but at a gentler rate of incline than if you just hiked
in the direction of the gradient.
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1. Closing off a surface, to apply Gauss’s Theorem.

Suppose we wish to compute
∫∫
S F • dS, where

F =
[
ecos(yz) tan(z2y), cos(ex

z

), 3z
]
,

and S is the five faces of the unit cube [0, 1] × [0, 1] × [0, 1], all
except for the bottom face on the xy-plane, as shown, with outward
orientation. We do not want to compute this directly, because F is
a mess and S has five parts. We would like to apply Gauss’s Theorem, but we can’t, because
our surface S is not closed.

When we wanted to apply Green’s Theorem to a curve that was not closed, we closed off
the curve (Page 36 # 1), and here we can use the same strategy, by closing off the surface.
Justify the following equation, and use it to find the value of

∫∫
S F • dS:∫∫

S
F • dS +

∫∫
bottom face

F • dS =

∫∫∫
solid cube

divF dV.

VLI / DD 2. Let C be the curve connecting (−1, 0) to (1, 0) along the top half of the unit circle,
traversed clockwise. Let F = [2x + y, 3y − x] be a vector field in the xy-plane. We wish to

compute

∫
C

F • ds.

(a) You know at least three methods (tools you have) to solve this problem. List them.

(b) Solve the problem using whichever of those ways is your favorite.

Gauss / DD 3. When I was taking multivariable calculus, I wondered if there could be a way to combine
Stokes’s Theorem (top) and Gauss’s Theorem (bottom):∫

∂S
F1 • d #»s =

∫∫
S

curlF1 • d
#»

S∫∫
∂E

F2 • d
#»

S =

∫∫∫
E

divF2 dV.

(a) Explain why, to combine them, we’d need S = ∂E, and F2 = curlF1.

(b) Explain why, if S = ∂E, the vector line integral (far left) would be zero.

(c) Explain why, if F2 = curlF1, the triple integral (far right) would be zero.

(d) Can you find a way to combine them without everything being zero?

The next page has a fun application of directional derivatives to politics.
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4. In the United States, voters usually vote
for either the Democratic or the Republi-
can Party. Political scientists try to predict
how voters will vote, based on demograph-
ics. Two factors that make a big difference
in voting preferences are years of education
(x) and yearly income in thousands of dol-
lars (y). The probability r of a voter voting
for a Republican candidate can be well ap-
proximated by the function

r(x, y) = 0.56− 0.02x+ 0.004y.

(a) What is the probability that a person with a college degree (16 years of education) and
a $60,000 yearly income votes Republican?

(b) How does the probability of voting Republican change as income increases?

(c) How does the probability of voting Republican change as education increases?

Education (x) and income (y) are related.
The relationship is well approximated by the
equation y = 5x. This trendline is shown in
red in the picture above.

(d) Find a vector in the direction of increas-
ing education and income (in other words, a
vector in the direction of the trendline).

(e) Find the directional derivative of proba-
bility of voting Republican, in the direction
of increasing education and income.

(f) Interpret your result in the contexts of
the picture to the right, and of politics.

While people make a big deal of the partial
derivatives – wealthier people are more likely
to vote Republican, and more educated peo-
ple are more likely to vote Democratic – in
fact, income and education are correlated, and the directional derivative shows that in the
principal direction of increase of both, there is no change in voter preferences.

Using directional derivatives, rather than just partial derivatives, to analyze this kind of
data, is a recent idea that Ella Foster-Molina, Swarthmore ’07 and current Social Sciences
Quantitative Laboratory Associate at Swarthmore, discovered in her Ph.D. work. No one
ever thought of applying multivariable calculus ideas to statistical analysis in this way before!

5. (Challenge) Let a,b, c be three-dimensional vectors with b 6= 0. Show that if they satisfy
a× b− (a • b)c = 0, then a • c = 0.
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Reference
Written by the instructors at Phillips Exeter Academy

acceleration: The derivative of velocity with respect to time.

angle-addition identities: For any angles α and β, cos(α + β) ≡ cosα cos β − sinα sin β
and sin(α + β) ≡ sinα cos β + cosα sin β.

angle between vectors: When two vectors u and v are placed tail-to-tail, the angle θ
they form can be calculated by the dot-product formula cos θ = u•v

|u| |v|
. If u•v = 0 then u

is perpendicular to v. If u•v < 0 then u and v form an obtuse angle.

antiderivative: If f is the derivative of g, then g is called an antiderivative of f. For
example, g(x) = 2x

√
x+ 5 is an antiderivative of f(x) = 3

√
x, because g′ = f .

average velocity is displacement divided by elapsed time.

bounded: Any subset of Rn that is contained in a suitably large disk.

Chain Rule: The derivative of a composite function C(x) = f(g(x)) is a product of deriva-
tives, namely C ′(x) = f ′(g(x))g′(x). The actual appearance of this rule changes from one
example to another, because of the variety of function types that can be composed. For
example, a curve can be traced in R3, on which a real-valued temperature distribution is
given; the composite R1 −→ R3 −→ R1 simply expresses temperature as a function of time,
and the derivative of this function is the dot product of two vectors.

chord: A segment that joins two points on a curve.

closed: Suppose that D is a set of points in Rn, and that every convergent sequence of
points in D actually converges to a point in D. Then D is called “closed.”

concavity: A graph y = f(x) is concave up on an interval if f ′′ is positive throughout the
interval. The graph is concave down on an interval if f ′′ is negative throughout the interval.

content: A technical term that is intended to generalize the special cases length, area, and
volume, so that the word can be applied in any dimension.

continuity: A function f is continuous at a if f(a) = lim
p→a

f(p). A continuous function is

continuous at all the points in its domain.

converge (integral): An improper integral that has a finite value is said to converge to
that value, which is defined using a limit of proper integrals.
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critical point: A point in the domain of a function f at which f ′ is either zero or undefined.

cross product: Given u = [p, q, r] and v = [d, e, f ], a vector that is perpendicular to both
u and v is [ qf − re, rd− pf, pe− qd ] = u× v.

curl: A three-dimensional vector field that describes the rotational tendencies of the three-
dimensional field from which it is derived.

curvature: This positive quantity is the rate at which the direction of a curve is changing,
with respect to the distance traveled along it. For a circle, this is just the reciprocal of the
radius. The principal normal vector points towards the center of curvature.

cycloid: A curve traced by a point on a wheel that rolls without slipping. Galileo named
the curve, and Torricelli was the first to find its area.

cylindrical coordinates: A three-dimensional system of coordinates obtained by append-
ing z to the usual polar-coordinate pair (r, θ).

decreasing: A function f is decreasing on an interval a ≤ x ≤ b if f(v) < f(u) holds
whenever a ≤ u < v ≤ b does.

derivative: Let f be a function that is defined for points p in Rn, and whose values f(p)
are in Rm. If it exists, the derivative f ′(a) is the m × n matrix that represents the best
possible linear approximation to f at a. In the case n = 1 (a parametrized curve in Rm),
f ′(a) is the m× 1 matrix that is visualized as the tangent vector at f(a). In the case m = 1,
the 1× n matrix f ′(a) is visualized as the gradient vector at a.

derivative at a point: Let f be a real-valued function that is defined for points in Rn.
Differentiability at a point a in the domain of f means that there is a linear function L
with the property that the difference between L(p) and f(p) approaches 0 faster than p

approaches a, meaning that 0 = lim
p→a

f(p)− L(p)

|p− a| . If such an L exists, then f ′(a) is the

matrix that defines L(p− a).

determinant: A ratio that is associated with any square matrix, as follows: Except for
a possible sign, the determinant of a 2 × 2 matrix M is the area of any region R in 2-
dimensional space, divided into the area of the region that results when M is applied to
R. Except for a possible sign, the determinant of a 3 × 3 matrix M is the volume of any
region R in 3-dimensional space, divided into the volume of the region that results when M
is applied to R.

differentiable: A function that has derivatives at all the points in its domain.
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directional derivative: Given a function f defined at a point p in Rn, and given a direction
u (a unit vector) in Rn, the derivative Duf(p) is the instantaneous rate at which the values
of f change when the input varies only in the direction specified by u.

discontinuous: A function f has a discontinuity at a if f(a) is defined but does not equal
lim
p→a

f(p); a function is discontinuous if it has one or more discontinuities.

disk: Given a point c in Rn, the set of all points p for which the distance |p− c| is at most
r is called the disk (or “ball”) of radius r, centered at c.

divergence: If v is a vector field, its divergence is the scalar function ∇ • v.

domain: The domain of a function consists of all the numbers for which the function returns
a value. For example, the domain of a logarithm function consists of positive numbers only.

double-angle identities: Best-known are sin 2θ ≡ 2 sin θ cos θ, cos 2θ ≡ 2 cos2 θ − 1, and
cos 2θ ≡ 1− 2 sin2 θ; special cases of the angle-addition identities.

double integral: A descriptive name for an integral whose domain of integration is two-
dimensional. When possible, evaluation is an iterative process, whereby two single-variable
integrals are evaluated instead.

e is approximately 2.71828182845904523536. This irrational number frequently appears in

scientific investigations. One of the many ways of defining it is e = lim
n→∞

(
1 + 1

n

)n
.

ellipsoid: A quadric surface, all of whose planar sections are ellipses.

extreme point: either a local minimum or a local maximum. Also called an extremum.

Extreme-value Theorem: Suppose that f is a continuous real-valued function that is
defined throughout a closed and bounded set D of points. Then f attains a maximal value
and a minimal value on D. This means that there are points a and b in D, such that
f(a) ≤ f(p) ≤ f(b) holds for all p in D. If f is also differentiable, then a is either a critical
point for f , or it belongs to the boundary of D; the same is true of b.

Fubini’s Theorem: Provides conditions under which the value of an integral is independent
of the iterative approach applied to it.

Fundamental Theorem of Calculus: In its narrowest sense, differentiation and integra-
tion are inverse procedures — integrating a derivative f ′(x) along an interval a ≤ x ≤ b
leads to the same value as forming the difference f(b)− f(a). In multivariable calculus, this
concept evolves.
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gradient: This is the customary name for the derivative of a real-valued function, especially
when the domain is multidimensional.

Greek letters: Apparently essential for doing serious math! There are 24 letters. The
upper-case characters are

A B Γ ∆ E Z H Θ I K Λ M N Ξ O Π P Σ T Υ Φ X Ψ Ω

and the corresponding lower-case characters are

α β γ δ ε ζ η θ ι κ λ µ ν ξ o π ρ σ τ υ φ χ ψ ω

Hessian: See second derivative.

hyperbola I: A hyperbola has two focal points, and the difference between the focal radii
drawn to any point on the hyperbola is constant.

hyperbola II: A hyperbola is determined by a focal point, a directing line, and an eccentric-
ity greater than 1. Measured from any point on the curve, the distance to the focus divided
by the distance to the directrix is always equal to the eccentricity.

hyperboloid: One of the quadric surfaces. Its principal plane of reflective symmetry has a
special property — every section obtained by slicing the surface perpendicular to this plane
is a hyperbola.

improper integral: This is an integral
∫
D f for which the domain D of integration is

unbounded, or for which the values of the integrand f are undefined or unbounded.

increasing: A function f is increasing on an interval a ≤ x ≤ b if f(u) < f(v) holds
whenever a ≤ u < v ≤ b does.

integrable: Given a region R and a function f(x, y) defined on R, f is said to be integrable
over R if the limit of Riemann sums used to define the integral of f over R exists.

integrand: A function whose integral is requested.

Jacobian: A traditional name for the derivative of a function f from Rn to Rm. For each
point p in the domain space, f ′(p) is an m× n matrix. When m = n, the matrix is square,
and its determinant is also called “the Jacobian” of f . Carl Gustav Jacobi (1804-1851) was
a prolific mathematician; one of his lesser accomplishments was to establish the symbol ∂
for partial differentiation.

l’Hôpital’s Rule: A method for dealing with indeterminate forms: If f and g are differ-

entiable, and f(a) = 0 = g(a), then lim
t→a

f(t)

g(t)
equals lim

t→a

f ′(t)

g′(t)
, provided that the latter limit

exists. The Marquis de l’Hôpital (1661-1704) wrote the first textbook on calculus.
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Lagrange multipliers: A method for solving constrained extreme-value problems.

Lagrange notation: The use of primes to indicate derivatives.

level curve: The configuration of points p that satisfy an equation f(p) = k, where f is a
real-valued function defined for points in R2 and k is a constant.

level surface: The configuration of points p that satisfy an equation f(p) = k, where f is
a real-valued function defined for points in R3 and k is a constant.

linearization: A generalization of a tangent line. Given a function f , the linearization L of
f at a is the best linear approximation of f at a, i.e. the function whose value agrees with
f , L(a) = f(a), and whose first derivatives or partial derivatives also all match those of f .

line integral: Given a vector field F and a path C (which does not have to be linear) in the
domain space, a real number results from “integrating F along C”.

Mean-Value Theorem: If the curve y = f(x) is continuous for a ≤ x ≤ b, and differentiable
for a < x < b, then the slope of the line through (a, f(a)) and (b, f(b)) equals f ′(c), where c
is strictly between a and b. There is also a version of this statement that applies to integrals.

normal vector: In general, this is a vector that is perpendicular to something (a line or a
plane). In the analysis of parametrically defined curves, the principal normal vector (which
points in the direction of the center of curvature) is the derivative of the unit tangent vector.

operator notation: A method of naming a derivative by means of a prefix, usually D, as

in D cosx = − sinx, or d
dx

lnx = 1
x

, or Dx(u
x) = ux(lnu)Dxu.

orthonormal: Describes a set of mutually perpendicular vectors of unit length.

parabola: This curve consists of all the points that are equidistant from a given point (the
focus) and a given line (the directrix).

paraboloid: One of the quadric surfaces. Sections obtained by slicing this surface with a
plane that contains the principal axis are parabolas.

partial derivative: A directional derivative that is obtained by allowing only one of the
variables to change.

path: A parametrization for a curve.
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polar coordinates: Polar coordinates for a point P in the xy-plane consist of two numbers
r and θ, where r is the distance from P to the origin O, and θ is the size of an angle in
standard position that has OP as its terminal ray.

polar equation: An equation written using the polar variables r and θ.

Product Rule: The derivative of p(x) = f(x)g(x) is p′(x) = f(x)g′(x) + g(x)f ′(x). The
actual appearance of this rule depends on what x, f , g, and “product” mean, however. One
can multiply numbers times numbers, numbers times vectors, and vectors times vectors —
in two different ways.

quadric surface: The graph of a quadratic polynomial in three variables.

Quotient Rule: The derivative of p(x) =
f(x)

g(x)
is p′(x) =

g(x)f ′(x)− f(x)g′(x)

[g(x)]2
. This is

unchanged in multivariable calculus, because vectors cannot be used as divisors.

second derivative: The derivative of a derivative. If f is a real-valued function of p, then
f ′(p) is a vector that is usually called the gradient of f , and f ′′(p) is a square matrix that
is often called the Hessian of f . The entries in these arrays are partial derivatives .

Second-Derivative Test: When it succeeds, this theorem classifies a critical point for a
differentiable function as a local maximum, a local minimum, or a saddle point (which in the
one-variable case is called an inflection point). The theorem is inconclusive if the determinant
of the second-derivative matrix is 0.

speed: The magnitude of velocity. For a parametric curve (x, y) = (f(t), g(t)), it is given
by the formula

√
(x′)2 + (y′)2 . Notice that that this is not the same as dy/dx.

spherical coordinates: Points in three-dimensional space can be described as (ρ, θ, φ),
where ρ is the distance to the origin, θ is longitude, and φ is co-latitude.

triple scalar product: A formula for finding the volume of parallelepiped, in terms of its
defining vectors. It is the determinant of a 3× 3 matrix.

velocity: This n-dimensional vector is the derivative of a differentiable path in Rn. When
n = 2, whereby a curve (x, y) = (f(t), g(t)) is described parametrically, the velocity is[
df

dt
,
dg

dt

]
or

[
dx

dt
,
dy

dt

]
, which is tangent to the curve. Its magnitude

√(
dx

dt

)2

+

(
dy

dt

)2

is

the speed. The components of velocity are themselves derivatives.

vector field: This is a descriptive name for a function F from Rn to Rn. For each p in the
domain, F (p) is a vector. The derivative (gradient) of a real-valued function is an example
of such a field.
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